Skip to main content
Log in

Molecular-dynamics simulations with explicit hydrodynamics II: On the collision of polymers with molecular obstacles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a study of the dynamics of single polymers colliding with molecular obstacles using Molecular-dynamics simulations. In concert with these simulations we present a generalized polymer-obstacle collision model which is applicable to a number of collision scenarios. The work focusses on three specific problems: i) a polymer driven by an external force colliding with a fixed microscopic post; ii) a polymer driven by a (plug-like) fluid flow colliding with a fixed microscopic post; and iii) a polymer driven by an external force colliding with a free polymer. In all three cases, we present a study of the length-dependent dynamics of the polymers involved. The simulation results are compared with calculations based on our generalized collision model. The generalized model yields analytical results in the first two instances (cases i) and ii)), while in the polymer-polymer collision example (case iii)) we obtain a series solution for the system dynamics. For the case of a polymer-polymer collision we find that a distinct V-shaped state exists as seen in experimental systems, though normally associated with collisions with multiple polymers. We suggest that this V-shaped state occurs due to an effective hydrodynamic counter flow generated by a net translational motion of the two-chain system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Viovy, Rev. Mod. Phys. 72, 813 (2000).

    Article  ADS  Google Scholar 

  2. A.E. Barron, H.W. Blanch, D.S. Soane, Electrophoresis 15, 597 (1994).

    Article  Google Scholar 

  3. C.F. Chou, R.H. Austin, O. Bakajin, J.O. Tegenfeldt, J.A. Castelino, S.S. Chan, E.C. Cox, H. Craighead, N. Darnton, T. Duke, J.Y. Han, S. Turner, Electrophoresis 21, 81 (2000).

    Article  Google Scholar 

  4. G.C. Randall, P.S. Doyle, Phys. Lett. Rev. 93, 1 (2004).

    Google Scholar 

  5. W.D. Volkmuth, T. Duke, M.C. Wu, R.H. Austin, A. Szabo, Phys. Rev. Lett. 72, 2117 (1994).

    Article  ADS  Google Scholar 

  6. W.D. Volkmuth, R.H. Austin, Nature 358, 600 (1992).

    Article  ADS  Google Scholar 

  7. N. Minc, C. Futterer, K. Dorfman, A. Bancaud, C. Gosse, C. Goubault, J.L. Viovy, Anal. Chem. 76, 3770 (2004).

    Article  Google Scholar 

  8. L. Song, M.F. Maestre, J. Biomol. Struct. Dyn. 9, 87 (1991).

    Google Scholar 

  9. J.M. Deutsch, J. Chem. Phys. 90, 7436 (1989).

    Article  ADS  Google Scholar 

  10. G.I. Nixon, G.W. Slater, Phys. Rev. E 50, 5033 (1994).

    Article  ADS  Google Scholar 

  11. P. Andre, D. Long, A. Ajdari, Eur. Phys. J. B 4, 307 (1998).

    Article  ADS  Google Scholar 

  12. P.S. Doyle, J. Bibette, A. Bancaud, J. Viovy, Science 295, 2237 (2002).

    Article  Google Scholar 

  13. M.E. Starkweather, M. Muthukumar, D.A. Hoagland, Macromolecules 31, 5495 (1998).

    Article  ADS  Google Scholar 

  14. M.E. Starkweather, M. Muthukumar, D.A. Hoagland, Macromolecules 33, 1245 (2000).

    Article  ADS  Google Scholar 

  15. E.M. Sevick, D.R.M. Williams, Eur. Phys. Lett. 56, 529 (2001).

    Article  ADS  Google Scholar 

  16. P.D. Patel, E.S.G. Shaqfeh, J. Chem. Phys. 118, 2941 (2003).

    Article  ADS  Google Scholar 

  17. P.M. Saville, E.M. Sevick, Macromolecules 32, 892 (1999).

    Article  ADS  Google Scholar 

  18. E.M. Sevick, D.R.M. Williams, Phys. Rev. Lett. 76, 2595 (1996).

    Article  ADS  Google Scholar 

  19. E.M. Sevick, D.R.M. Williams, Phys. Rev. E 50, 3357 (1994).

    Article  ADS  Google Scholar 

  20. J.S. Hur, E.S.G. Shaqfeh, J. Rheol. 45, 421 (2001).

    Article  ADS  Google Scholar 

  21. U.S. Agarwal, J. Chem. Phys. 113, 3397 (2000).

    Article  ADS  Google Scholar 

  22. B. Ladoux, P.S. Doyle, Europhys. Lett. 52, 511 (2000).

    Article  ADS  Google Scholar 

  23. R. Rzehak, D. Kienle, T. Kawakatsu, W. Zimmerman, Eur. Phys. Lett. 46, 821 (1999).

    Article  ADS  Google Scholar 

  24. K. Kremer, G.S. Grest, I. Carmesian, Phys. Rev. Lett. 61, 566 (1988).

    Article  ADS  Google Scholar 

  25. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  ADS  Google Scholar 

  26. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids, 4th ed. (Oxford Science Publications, Oxford, 1987).

  27. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, 1995).

  28. M. Kenward, G.W. Slater, J. Eur. Phys. E 14, 55 (2004).

    Article  Google Scholar 

  29. M. Cheon, J. Chang, J. Koplik, J.R. Banavar, Europhys. Lett. 58, 215 (2002).

    Article  ADS  Google Scholar 

  30. M. Tanaka, A.Y. Grosberg, Eur. Phys. J. E 7, 371 (2002).

    Google Scholar 

  31. D.C. Rapaport, Phys. Rev. A 36, 3288 (1987).

    Article  ADS  Google Scholar 

  32. H. Goldstein, Classical Mechaincs (Addison-Wesley, 1980).

  33. O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin, E.C. Cox, Phys. Rev. Lett. 80, 2737 (1998).

    Article  ADS  Google Scholar 

  34. O. de Carmejane, Y. Yamaguchi, T.I. Todorov, M.D. Morris, Electrophoresis 22, 2433 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kenward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenward, M., Slater, G.W. Molecular-dynamics simulations with explicit hydrodynamics II: On the collision of polymers with molecular obstacles. Eur. Phys. J. E 20, 125–141 (2006). https://doi.org/10.1140/epje/i2006-10008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10008-2

PACS.

Navigation