Skip to main content
Log in

Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic-C liquid crystals. The coexistence of C1 and C2 chevron structures within a single cell causes zigzag defects to occur and may affect the optical characteristics of the cell. By standard Euler-Lagrange minimisation of the total energy of the system, we obtain analytical expressions for the equilibrium director cone angle in the two chevron states. These in turn allow us to compare the total energies of the states and determine the globally stable chevron profile. We show that analytical predictions for the critical transition temperature, which depends on anchoring strength and pretilt angle, are in good agreement with those obtained numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Rieker, N.A. Clark, G.S. Smith, G.S. Parmar, E.B. Sirota, C.R. Safinya, Phys. Rev. Lett. 59, 2658 (1987).

    Article  PubMed  Google Scholar 

  2. N.A. Clark, T.P. Rieker, Phys. Rev. A 37, 1053 (1988).

    Article  PubMed  Google Scholar 

  3. S.T. Lagerwall, Ferroelectric and Anti-ferroelectric Liquid Crystals (Wiley-VCH, Weinheim 1999).

  4. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).

    Article  Google Scholar 

  5. M. Nakagawa, Mol. Cryst. Liq. Cryst. 174, 65 (1989).

    Google Scholar 

  6. M. Nakagawa, Displays 11, 67 (1990).

    Article  Google Scholar 

  7. S. Mukai, M. Nakagawa, J. Phys. Soc. Jpn. 62, 1984 (1993).

    Article  Google Scholar 

  8. C. Anderson, PhD Thesis, University of Strathclyde (1999).

  9. A. de Meyere, H. Paulwels, E. de Ley, Liq. Cryst. 14, 1269 (1993).

    Google Scholar 

  10. L. Limat, J. Prost, Liq. Cryst. 13, 101(1993).

    Google Scholar 

  11. L. Limat, J. Phys. II 5, 803 (1995).

    Article  Google Scholar 

  12. N.J. Mottram, N. Ul Islam, S.J. Elston, Phys. Rev. E 60, 613 (1999).

    Article  Google Scholar 

  13. N. Vaupotič, S. Kralj, M. Čopič, T.J. Sluckin, Phys. Rev. E 54, 3783 (1996).

    Article  Google Scholar 

  14. S.M. Beldon, N.J. Mottram, S.J. Elston, Mol. Cryst. Liq. Cryst. 365, 729 (2001).

    Google Scholar 

  15. A.N. Shalaginov, L.D. Hazelwood, T.J. Sluckin, Phys. Rev. E 58, 7455 (1998).

    Article  Google Scholar 

  16. A.N. Shalaginov, L.D. Hazelwood, T.J. Sluckin, Phys. Rev. E 60, 4199 (1999).

    Article  Google Scholar 

  17. A. Diaz, N.J. Mottram, G. McKay, Mol. Cryst. Liq. Cryst. 438, 1581 (2005).

    Google Scholar 

  18. C. Wang, R. Kurihara, P.J. Bos, S. Kobayashi, J. Appl. Phys. 90, 4452 (2001).

    Article  Google Scholar 

  19. A.S. Morse, H.F. Gleeson, S. Cummings, Liq. Cryst. 23, 717 (1997).

    Article  Google Scholar 

  20. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London and New York, 2004).

  21. S.A. Pikin, Structural Transformations in Liquid Crystals (Gordon & Breach, New York, 1991).

  22. S.J. Elston, J.R. Sambles, The Optics of Thermotropic Liquid Crystals (Taylor and Francis, London and New York, 1998).

  23. F. Giesselmann, P. Zugenmaier, I. Dierking, S.T. Lagerwall, B. Stebler, M. Kaspar, V. Hamplova, M. Glogarova, Phys. Rev. E 60, 598 (1999).

    Article  Google Scholar 

  24. N.J. Mottram, S.J. Elston, Eur. Phys. J. B 12, 277 (1999).

    Article  Google Scholar 

  25. D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Handbook of Liquid Crystals, Vol. 1 (Wiley-VCH, Weinheim, 1998).

  26. C.V. Brown, J.C. Jones, P.E. Dunn, Mol. Cryst. Liq. Cryst. A 331, 2325 (1999).

    Google Scholar 

  27. A. Findon, H.F. Gleeson, Ferroelectrics 277, 35 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Mottram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, A., Mottram, N.J. & McKay, G. Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals. Eur. Phys. J. E 18, 231–237 (2005). https://doi.org/10.1140/epje/i2005-10041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10041-7

PACS.

Navigation