Skip to main content
Log in

Photon channelling in foams

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Experiments by Gittings, Bandyopadhyay and Durian (Europhys. Lett. 65, 414 (2004)) demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting et al. without any free parameters. It links the photon's path-length fraction f in the liquid phase to the liquid fraction ɛ. We then construct two-dimensional Voronoi foams, replace the cell edges by channels to represent the liquid films and simulate photon paths according to the laws of ray optics using transmission and reflection coefficients from Fresnel's formulas. In an exact honeycomb foam, the photons show superdiffusive behavior. It becomes diffusive as soon as disorder is introduced into the foams. The dependence of the diffusion constant on channel width and refractive index is explained by a one-dimensional random-walk model. It contains a photon channelling state that is crucial for the understanding of the numerical results. At the end, we shortly comment on the observation that photon channelling only occurs in a finite range of ɛ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, New York, 1999).

  2. D.J. Durian, D.A. Weitz, D.J. Pine, Science 252, 686 (1991)

    Google Scholar 

  3. J.C. Earnshaw, A.H. Jaafar, Phys. Rev. E 49, 5408 (1994).

    Article  Google Scholar 

  4. R. Höhler, S. Cohen-Addad, H. Hoballah, Phys. Rev. Lett. 79, 1154 (1997)

    Article  Google Scholar 

  5. A.D. Gopal, D.J. Durian, J. Colloid Interface Sci. 213, 169 (1999).

    Article  PubMed  Google Scholar 

  6. M.U. Vera, A. Saint-Jalmes, D.J. Durian, Appl. Opt. 40, 4210 (2001).

    Google Scholar 

  7. G. Maret, P.E. Wolf, Z. Phys. B, 65, 409 (1987)

    Google Scholar 

  8. B.A. van Tiggelen, R. Maynard, A. Heiderich, Phys. Rev. Lett. 77, 639 (1996)

    Article  PubMed  Google Scholar 

  9. P.D. Kaplan, A.D. Dinsmore, A.G. Yodh, D.J. Pine, Phys. Rev. E 50, 4827 (1994).

    Article  Google Scholar 

  10. A.S. Gittings, R. Bandyopadhyay, D.J. Durian, Europhys. Lett. 65, 414 (2004).

    Article  Google Scholar 

  11. S. Skipetrov, unpublished (2002).

  12. MF Miri, H. Stark, Phys. Rev. E 68, 031102 (2003).

    Article  Google Scholar 

  13. MF Miri, H. Stark, Europhys. Lett. 65, 567 (2004).

    Article  Google Scholar 

  14. MF Miri, H. Stark, J. Phys. A 38, 3743 (2005).

    Article  MathSciNet  Google Scholar 

  15. MF Miri, E. Madadi, H. Stark, to be published in Phys. Rev. E, Vol. 72 (2005).

  16. M. Schmiedeberg, H. Stark, Superdiffusion in a honeycomb billard, in preparation.

  17. D. Weaire, N. Rivier, Contemp. Phys. 25, 59 (1984).

    Google Scholar 

  18. A. Okabe, B. Boots, K. Sugihara, Spatial Tessellations, Concepts and Applications of Voronoi Diagrams (John Wiley & Sons, Chichester, 2000).

  19. L.J. Gibson, F.A. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1997).-1

  20. H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983)

    Article  Google Scholar 

  21. J.R. Shewchuk, http://www-2.cs.cmu.edu/$\sim$quake/tri\-angle.html.

  22. L.A. Bunimovich, Ya. G. Sinai, Commun. Math. Phys. 78, 247

  23. G. Zumofen, J. Klafter, Phys. Rev. E 47, 851 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmiedeberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiedeberg, M., Miri, M. & Stark, H. Photon channelling in foams. Eur. Phys. J. E 18, 123–131 (2005). https://doi.org/10.1140/epje/i2005-10034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10034-6

PACS.

Navigation