Skip to main content
Log in

Neutron scattering from equilibrium-swollen networks

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Small-angle neutron scattering measurements were performed on end-linked poly (dimethylsiloxane) (PDMS) networks swollen to equilibrium with d-benzene. Comparison was made with equivalent concentration PDMS solutions. Equilibrium-swollen networks consistently displayed a linear scattering regime at low q followed by a good-solvent-like scaling regime at high q in agreement with the predictions of the Gel Tensile Blob (GTB) model. Data are fit using the unified function modified for the GTB model (3-parameter fit). Equilibrium-swollen networks display a base structural size, the gel tensile-blob size, ξ, that was found to be independent of the molecular weight between crosslinks for the series of molecular weights studied, consistent with the predictions of the model. The length of the extended tensile structure, L, can be larger than the length of the fully extended network strand. The predicted scaling relationship for L, LQ1/2Navg, where Navg = (1/fNc2+1/4Ne2\( \left.\vphantom{ {{{1} / {fN_{\rm c}^{2}} } + {{1} / {4N_{\rm e}^{2}} }} }\right)^{{ - 1 / 2}}_{}\), Q is the equilibrium swelling ratio, Nc is the molecular weight between crosslinks, Ne is the entanglement molecular weight and f is the crosslink functionality is in agreement with experimental results for the networks studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).

  2. P-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

  3. J.P. Cohen Addad (Editor), Physical Properties of Polymeric Gels (Wiley, New York, 1996).

  4. T. Tanaka, L.O. Hocker, G.B. Benedek, J. Chem. Phys. 59, 5151 (1973).

    Article  Google Scholar 

  5. F. Horkay, A.M. Hecht, E. Geissler, J. Chem. Phys. 91, 2706 (1989).

    Article  Google Scholar 

  6. F. Bueche, J. Colloid Interface Sci. 33, 61 (1970).

    Article  Google Scholar 

  7. E. Pines, W. Prins, J. Polym. Sci. B 10, 719 (1972).

    Article  Google Scholar 

  8. K.L. Wun, W. Prins, J. Polym. Sci. Polym. Phys. Ed. 12, 533 (1974).

    Article  Google Scholar 

  9. R.S. Stein, J. Polym. Sci. B 7, 657 (1969)

    Article  Google Scholar 

  10. J.G.H. Joosten, J.L. McCarthy, P.N. Pusey, Macromolecules 24, 6690 (1991).

    Article  Google Scholar 

  11. H. Benoit, D. Decker, R. Duplessix, C. Picot, P. Rempp, J.P. Cotton, B. Farnoux, G. Jannik, R. Ober, J. Polym. Sci. Polym. Phys. Ed. 14, 2119 (1976).

    Article  Google Scholar 

  12. M. Beltzung, J. Hertz, C. Picot, Macromolecules 16, 580 (1983).

    Article  Google Scholar 

  13. J. Bastide, R. Duplessix, C. Picot, S. Candau, Macromolecules 17, 83 (1984).

    Article  Google Scholar 

  14. E. Mendes, P. Lindner, M. Buzier, F. Boue, J. Bastide, Phys. Rev. Lett. 66, 1595 (1991).

    Article  PubMed  Google Scholar 

  15. F. Horkay, A.M. Hecht, S. Mallam, E. Geissler, A.R. Rennie, Macromolecules 24, 2896 (1991).

    Article  Google Scholar 

  16. A.N. Falcao, J.S. Pedersen, K. Mortensen, Macromolecules 26, 5350 (1993).

    Article  Google Scholar 

  17. E. Geissler, F. Horkay, A.-M. Hecht, Phys. Rev. Lett. 71, 645 (1993).

    Article  PubMed  Google Scholar 

  18. E. Mendes, A. Hakiki, A, Ramzi, J. Herz, F. Schosseler, J.P. Munch, F. Boue, J. Bastide, ACS Abstr. PMSE 205, 127 (1993).

    Google Scholar 

  19. S.K. Sukumaran, G. Beaucage, Europhys. Lett. 59, 714 (2002).

    Article  Google Scholar 

  20. J. Bastide, L. Leibler, Macromolecules 21, 2647 (1988).

    Article  Google Scholar 

  21. A. Onuki, J. Phys. II 2, 45 (1992).

    Article  Google Scholar 

  22. S. Panyukov, Y. Rabin, Phys. Rep. 269, 1 (1996).

    Article  Google Scholar 

  23. T. Norisuye, N. Masui, Y. Kida, D. Ikuta, E. Kokufuta, S. Ito, S. Panyukov, M. Shibayama, Polymer 43, 5289 (2002).

    Article  Google Scholar 

  24. P. Pincus, Macromolecules 9, 386 (1976).

    Article  Google Scholar 

  25. G. Beaucage, S. Rane, S. Sukumaran, M.M. Satkowski, L.A. Schechtman, Y. Doi, Macromolecules 30, 4158 (1997).

    Article  Google Scholar 

  26. G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996).

    Article  Google Scholar 

  27. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  28. B. Viers, PhD Thesis, University of Cincinnati (1999).

  29. A. Guinier, G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955).

  30. G. Beaucage, Phys. Rev. E 70, 031401 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Beaucage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumaran, S.K., Beaucage, G., Mark, J.E. et al. Neutron scattering from equilibrium-swollen networks. Eur. Phys. J. E 18, 29–36 (2005). https://doi.org/10.1140/epje/i2005-10030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10030-x

PACS.

Navigation