Skip to main content
Log in

A thin-film equation for viscoelastic liquids of Jeffreys type

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We derive a novel thin-film equation for linear viscoelastic media describable by generalized Maxwell or Jeffreys models. As a first application of this equation we discuss the shape of a liquid rim near a dewetting front. Although the dynamics of the liquid is equivalent to that of a phenomenological model recently proposed by Herminghaus et al. (S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002)), the liquid rim profile in our model always shows oscillatory behaviour, contrary to that obtained in the former. This difference in behaviour is attributed to a different treatment of slip in both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Seemann, S. Herminghaus, K. Jacobs, J. Phys. Condens. Matter 13, 4925 (2001).

    Article  Google Scholar 

  2. P. Müller-Buschbaum, J. Phys. Condens. Matter 15, R1549 (2003).

  3. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nature Mater. 2, 59 (2003).

    Article  Google Scholar 

  4. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001).

    Article  Google Scholar 

  5. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).

  6. S.A. Safran, J. Klein, J. Phys. II 3, 749 (1993).

    Article  Google Scholar 

  7. S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002).

    Article  PubMed  Google Scholar 

  8. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 12, 101 (2003).

    PubMed  Google Scholar 

  9. T. Vilmin, E. Raphaël, cond-mat/0502228 (2005).

  10. J. Jäckle, J. Phys. Condens. Matter 10, 7121 (1998).

    Article  Google Scholar 

  11. M.A. Spaid, G.M. Homsy, Phys. Fluids 8, 460 (1996).

    Article  Google Scholar 

  12. D.E. Weidner, L.W. Schwartz, Phys. Fluids 6, 3535 (1994).

    Article  Google Scholar 

  13. A. Carré, F. Eustache, C. R. Acad. Sci. Paris, Ser. II b 325, 709 (1997).

    Google Scholar 

  14. A. de Ryck, D. Quéré, Langmuir 14, 1911 (1998).

    Article  Google Scholar 

  15. F. Saulnier, E. Raphaël, P.G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002).

    Article  PubMed  Google Scholar 

  16. V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002).

    Article  PubMed  Google Scholar 

  17. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Fluids, Vol. 1 (Wiley & Sons, New York, 1977).

  18. G. Böhme, Strömungsmechanik nichtnewtonscher Fluide (Teubner, Stuttgart, 2000).

  19. We note that there are different sign conventions on $\Stress$ in the literature

  20. M.A. Spaid, G.M. Homsy, J. Non-Newtonian Fluid Mech. 55, 259 (1994).

    Google Scholar 

  21. R. Khayat, J. Non-Newtonian Fluid Mech. 95, 199 (2000).

    Article  Google Scholar 

  22. Y.L. Zhang, O.K. Matar, R.V. Craster, J. Non-Newtonian Fluid Mech. 105, 53 (2002).

    Article  Google Scholar 

  23. R. Konrad, K. Jacobs, A. Münch, B. Wagner, T.P. Witelski, submitted to Phys. Rev. Lett. (2004).

  24. A. Münch, B. Wagner, T.P. Witelski, submitted to J. Eng. Math.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Blossey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauscher, M., Münch, A., Wagner, B. et al. A thin-film equation for viscoelastic liquids of Jeffreys type. Eur. Phys. J. E 17, 373–379 (2005). https://doi.org/10.1140/epje/i2005-10016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10016-8

PACS.

Navigation