Skip to main content
Log in

Polymer confinement and bacterial gliding motility

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Cyanobacteria and myxobacteria use slime secretion for gliding motility over surfaces. The slime is produced by the nozzle-like pores located on the bacteria surface. To understand the mechanism of gliding motion and its relation to slime polymerization, we have performed molecular dynamics simulations of a molecular nozzle with growing inside polymer chains. These simulations show that the compression of polymer chains inside the nozzle is a driving force for propulsion. There is a linear relationship between the average nozzle velocity and the chain polymerization rate with a proportionality coefficient dependent on the geometric characteristics of the nozzle such as its length and friction coefficient. This minimal model of the molecular engine was used to explain the gliding motion of bacteria over surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hoiczyk, Arch. Microbiol. 174, 11 (2000).

    Article  Google Scholar 

  2. M.J. Mcbride, Annu. Rev. Microbiol. 55, 49 (2001).

    Article  PubMed  Google Scholar 

  3. L. Mahadevan, P. Matsudaira, Science 288, 95 (2000).

    Article  PubMed  Google Scholar 

  4. C. Wolgemuth, E. Hoiczyk, D. Kaiser, G. Oster, Curr. Biol. 12, 369 (2002).

    Article  PubMed  Google Scholar 

  5. R.M. Harshey, Annu. Rev. Microbiol. 57, 249 (2003).

    Article  PubMed  Google Scholar 

  6. E. Hoiczyk, W. Baumeister, Curr. Biol. 8, 1161 (1998).

    Article  PubMed  Google Scholar 

  7. E. Hoiczyk, W. Baumeister, J. Bacteriol. 177, 2387 (1995).

    PubMed  Google Scholar 

  8. J.A. Theriot, Traffic 1, 19 (2000).

    Article  PubMed  Google Scholar 

  9. E. Jahn, Beitrage zur botanischen protostologie. I. Die Polyangiden (Leipzig, Gerbreuder Borntraeger, 1924).

  10. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

  11. L.R.G. Treloar, The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975).

  12. M. Shibayma, T. Tanaka, Adv. Polym. Sci. 109, 1 (1993).

    Google Scholar 

  13. A. Mogilner, G. Oster, Biophys. J. 84, 1591 (2003).

    PubMed  Google Scholar 

  14. F. Gerbal, P. Chaikin, Y. Rabin, J. Prost, Biophys. J. 79, 2259 (2000).

    PubMed  Google Scholar 

  15. A. Bernheim-Groswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carlier, C. Sykes, Nature 417, 308 (2002).

    Article  PubMed  Google Scholar 

  16. Y. Marcy, J. Prost, M.-F. Carlier, C. Sykes, Proc. Natl. Acad. Sci. U.S.A. 101, 5992 (2004).

    Article  PubMed  Google Scholar 

  17. F.C. Mackintosh, P.A. Janmey, Curr. Opin. Solid State Mater. Sci. 2, 350 (1997).

    Article  Google Scholar 

  18. J.L. Barrat, J.F. Joanny, Adv. Chem. Phys. 94, 1 (1996).

    Google Scholar 

  19. S. Forster, M. Schmidt, Adv. Polym. Sci. 120, 51 (1995).

    Google Scholar 

  20. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).

  21. C. Holm, J.F. Joanny, K. Kremer, R.R. Netz, P. Reineker, C. Seidel, T.A. Vilgis, R.G. Winkler, Adv. Polym. Sci. 166, 67 (2004).

    Google Scholar 

  22. K. Kageyama, J. Tamazawa, T. Aida, Science 285, 2113 (1999).

    Article  PubMed  Google Scholar 

  23. K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, New York, 1995).

  24. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications (Academic Press, New York, 1996).

  25. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, New York, 1986).

  26. B.N.J. Persson, Sliding Friction. Physical Principles and Applications (Springer, New York, 1997).

  27. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).

  28. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, London, 1979).

  29. A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994).

  30. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003).

  31. M. Doi, Dynamics and Patterns in Complex Fluids, edited by A. Onuki, K. Kawasaki (Springer-Verlag, Berlin, 1990).

  32. S.T. Milner, Phys. Rev. Lett. 66, 1477 (1991).

    Article  PubMed  Google Scholar 

  33. A.J. Hunt, F. Gittes, J. Howard, Biophys. J. 67, 766 (1994).

    PubMed  Google Scholar 

  34. D.C. Bottino, L.J. Fauci, Eur. Biophys. J. 27, 532 (1998).

    Article  PubMed  Google Scholar 

  35. D.C. Bottino, A. Mogilner, T. Roberts, M. Stewart, G. Oster, J. Cell Sci. 115, 367 (2002).

    PubMed  Google Scholar 

  36. R. Sambeth, A. Baumgaertner, Phys. Rev. Lett. 86, 5196 (2001).

    Article  PubMed  Google Scholar 

  37. S.V.M. Satyanarayana, A. Baumgaertner, J. Chem. Phys. 121, 4255 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dobrynin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, J., Dobrynin, A.V. Polymer confinement and bacterial gliding motility. Eur. Phys. J. E 17, 361–372 (2005). https://doi.org/10.1140/epje/i2005-10015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10015-9

PACS.

Navigation