Skip to main content
Log in

Dissipative flows of 2D foams

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We analyze the flow of a liquid foam between two plates separated by a gap of the order of the bubble size (2D foam). We concentrate on the salient features of the flow that are induced by the presence, in an otherwise monodisperse foam, of a single large bubble whose size is one order of magnitude larger than the average size. We describe a model suited for numerical simulations of flows of 2D foams made up of a large number of bubbles. The numerical results are successfully compared to analytical predictions based on scaling arguments and on continuum medium approximations. When the foam is pushed inside the cell at a controlled rate, two basically different regimes occur: a plug flow is observed at low flux whereas, above a threshold, the large bubble migrates faster than the mean flow. The detailed characterization of the relative velocity of the large bubble is the essential aim of the present paper. The relative velocity values, predicted both from numerical and from analytical calculations that are discussed here in great detail, are found to be in fair agreement with experimental results from the preprint Experimental evidence of flow destabilization in a 2D bidisperse foam by the present authors (2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Schwartz, H.M. Princen, J. Colloid Interface Sci. 118, 201 (1987).

    Google Scholar 

  2. D.A. Reinelt, A.M. Kraynik, J. Colloid Interface Sci. 132, 491 (1989).

    Article  Google Scholar 

  3. J.A. Glazier, D. Weaire, J. Phys. Condens. Matter 4, 1867 (1992).

    Article  Google Scholar 

  4. X. Li, H. Zhou, C. Pozrikidis, J. Fluid Mech. 286, 379 (1995).

    Google Scholar 

  5. T. Okuzono, K. Kawasaki, Phys. Rev. E 51, 1246 (1995).

    Article  Google Scholar 

  6. D.J. Durian, Phys. Rev. Lett. 75, 4780 (1995).

    Article  PubMed  Google Scholar 

  7. I. Cantat, R. Delannay, Phys. Rev. E 67, 031501 (2003).

    Article  Google Scholar 

  8. N. Kern, D. Weaire, A. Martin, S. Hutzler, S.J. Cox, Phys. Rev. E 70, 041411 (2004).

    Article  Google Scholar 

  9. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).

    Article  Google Scholar 

  10. I. Cantat, C. Poloni, R. Delannay, Experimental evidence of flow destabilization in a 2D bidisperse foam, preprint (2005).

  11. S. Cox, D. Weaire, M.F. Vaz, Eur. Phys. J. E 7, 311 (2002).

    Google Scholar 

  12. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2000).

  13. G. Hirasaki, J.B. Lawson, Soc. Pet. Eng. J., p. 176 (1985).

  14. Q. Xu, W.R. Rossen, Colloids Surf. A 216, 175 (2003).

    Article  Google Scholar 

  15. I. Cantat, N. Kern, R. Delannay, Europhys. Lett. 65, 726 (2004).

    Article  Google Scholar 

  16. D. Buzza, C.-Y. Lu, M.E. Cates, J. Phys. II 5, 37 (1995).

    Article  Google Scholar 

  17. N.D. Denkov, V. Subramanian, D. Gurovich, A. Lips, Colloids Surf. A 263, 129 (2005).

    Article  Google Scholar 

  18. L. Landau, B. Levich, Acta Physicochim. USSR 17, 42 (1942).

    Google Scholar 

  19. K.J. Mysels, K. Shinoda, S. Frankel, Soap Films: Study of Their Thinning and a Bibliography (Pergamon, New York, 1959).

  20. F.P. Bretherton, J. Fluid Mech. 10, 166 (1961).

    Google Scholar 

  21. S. Sanyal, J.A. Glazier, cond-mat/0505770.

  22. A. Kabla, G. Debregeas, Phys. Rev. Lett. 90, 258303 (2003).

    Article  PubMed  Google Scholar 

  23. D. Weaire, M.A. Fortes, Adv. Phys. 43, 685 (1994).

    Google Scholar 

  24. R. Höhler, S. Cohen-Addad, H. Hoballah, Phys. Rev. Lett. 79, 1154 (1997).

    Article  Google Scholar 

  25. H. Faxen, 9e Congrès des Mathématiciens Scandinaves, Helsigfors (1938) p. 165.

  26. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publisher, Dordrecht, 1986).

  27. F. Graner, Y. Jiang., E. Janiaud, C. Flament, Phys. Rev. E 63, 011402 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cantat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantat, I., Delannay, R. Dissipative flows of 2D foams. Eur. Phys. J. E 18, 55–67 (2005). https://doi.org/10.1140/epje/i2004-10154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10154-5

PACS.

Navigation