Skip to main content
Log in

Shearing behavior of polydisperse media

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the shearing of polydisperse and bidisperse media with a size ratio of 10. Simulations are performed with a two-dimensional shear cell using contact dynamics. With a truncated power law for the polydisperse media we find that they show a stronger dilatancy and greater resistance to shearing than bidisperse mixtures. To model additives used to control viscosity we introduce so-called “point-like particles”. Even changing the kinematic behavior very little, the point-like particles reduce the force necessary to maintain a fixed shearing velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Luding, Phys. Rev. E 55, 4720 (1997).

    CAS  Google Scholar 

  2. Farhang Radjai, Lothar Brendel, Phys. Rev. E 54, 861 (1996).

    Article  CAS  Google Scholar 

  3. Farhang Radjai, Michael Jean, Jean-Jaques Moreau, Stéphane Roux, Phys. Rev. Lett. 77, 274 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. J.J. Moreau, Lect. Notes Appl. Comput. Mech., Vol. 14 (Springer-Verlag, 2004) Chapt. Novel Approaches in Civil Engineering.

  5. P. Thompson, G. Grest, Phys. Rev. Lett. 67, 1751 (1991).

    Article  PubMed  Google Scholar 

  6. H.J. Tillemans, H.J. Herrmann, Physica A 217, 261 (1995).

    Google Scholar 

  7. F. Lacombe, S. Zapperi, H.J.Herrmann, Eur. Phys. J. E 2, 181 (2000).

    Google Scholar 

  8. M. Lätzel, S. Luding, H.J. Herrmann, D.W. Howell, R.P. Behringer, Eur. Phys. J. E 11, 325 (2002).

    Google Scholar 

  9. James F. Lutsko, The rheology of dense, polydisperse granular fluids under shear, cond-mat/0407100 (2004).

  10. Brian Miller, Corey O’Hern, R.P. Behringer, Phys. Rev. Lett. 77, 3110 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Daniel W. Howell, R.P. Behringer, Chaos 9, 559 (1999).

    Article  PubMed  Google Scholar 

  12. O. Reynolds, Philos. Mag. 20, 469 (1885).

    Google Scholar 

  13. J. Géminard, W. Losert, J. Gollub, Phys. Rev. E 59, 5881 (1999).

    Article  Google Scholar 

  14. S. Nasuno, A. Kudrolli, J.P. Gollub, Phys. Rev. Lett. 79, 949 (1997).

    Article  CAS  Google Scholar 

  15. C.T. Veje, Daniel W. Howell, R.P. Behringer, Phys. Rev. E 59, 739 (1999).

    Article  CAS  Google Scholar 

  16. J.S. Chong, E.B. Christiansen, A.D. Baer, J. Appl. Polym. Sci. 15, 2007 (1971).

    CAS  Google Scholar 

  17. Philippe Gondret, Luc Petit, J. Rheol. 41, 1261 (1997).

    Article  CAS  Google Scholar 

  18. Rhichard L. Hoffmann, J. Rheol. 36, 947 (1992).

    Article  Google Scholar 

  19. R.J. Farris, Trans. Soc. Rheol. 12, 281 (1968).

    Article  Google Scholar 

  20. M.Z. Sengun, R.F. Probstein, Rheol. Acta 28, 382 (1989).

    Article  CAS  Google Scholar 

  21. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wackenhut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wackenhut, M., McNamara, S. & Herrmann, H. Shearing behavior of polydisperse media. Eur. Phys. J. E 17, 237–246 (2005). https://doi.org/10.1140/epje/i2004-10144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10144-7

PACS.

Navigation