Skip to main content
Log in

Undulation versus Frederiks instability in nematic elastomers in an external electric field

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the behaviour of a nematic side-chain elastomer under the influence of an external static electric field for a specific geometry. For this investigation, the nematic elastomer is considered to be a perfect insulator. On the basis of a macroscopic description we generalize the classical Frederiks transition in a low-molecular-weight (LMW) nematic liquid crystal to the elastomeric case. We predict, using a linear stability analysis, that the onset of the instability can be qualitatively different from the LMW case: in liquid crystalline elastomers an undulation instability can arise at onset. Whether the analogue of a Frederiks instability or an undulation instability occurs first depends on the sample thickness as well as on the material parameters. It turns out that the parameter which describes the coupling between the deformations of the elastomer and the relative rotations between the elastomer and the director field of the nematic phase is most important for the predicted response of the system. Furthermore, we find that the magnitude of the critical electric field is much higher in the elastomeric than in the low-molecular-weight case.-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Frederiks, V. Zolina, Trans. Faraday Soc. 29, 919 (1933).

    Google Scholar 

  2. P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1975).

  3. H. Gruler, G. Meier, Mol. Cryst. Liq. Cryst. 16, 299 (1972).

    CAS  Google Scholar 

  4. R. Williams, J. Chem. Phys. 39, 384 (1963).

    CAS  ADS  Google Scholar 

  5. W. Helfrich, J. Chem. Phys. 51, 4092 (1969).

    CAS  ADS  Google Scholar 

  6. H. Finkelmann, H.-J. Kock, G. Rehage, Makromol. Chem., Rapid Commun. 2, 317 (1981).

    CAS  Google Scholar 

  7. H.R. Brand, H. Finkelmann in Handbook of Liquid Crystals, edited by D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, Vol. 3 (Wiley VCH, Weinheim, 1998) pp. 277-302.

  8. H. Finkelmann, H.R. Brand, Trends Polym. Sci. 2, 222 (1994).

    CAS  Google Scholar 

  9. J. Weilepp, H.R. Brand, Europhys. Lett. 34, 495 (1996).

    CAS  ADS  Google Scholar 

  10. H.R. Brand, Makromol. Chem., Rapid Commun. 10, 57 (1989).

    CAS  Google Scholar 

  11. H.R. Brand, O. Müller, Macromol. Theory Simul. 11, 154 (2002).

    CAS  Google Scholar 

  12. J. Weilepp, H.R. Brand, Macromol. Theory Simul. 7, 91 (1998).

    CAS  Google Scholar 

  13. N.A. Clark, R.B. Meyer, Appl. Phys. Lett. 22, 493 (1973).

    CAS  ADS  Google Scholar 

  14. M. Delaye, R. Ribotta, G. Durand, Phys. Lett. A 44, 139 (1973).

    CAS  ADS  Google Scholar 

  15. G.K. Auernhammer, H.R. Brand, H. Pleiner, Rheol. Acta 39, 215 (2000).

    CAS  Google Scholar 

  16. L. Golubović, T.C. Lubensky, Phys. Rev. Lett. 63, 1082 (1989).

    PubMed  ADS  Google Scholar 

  17. P.D. Olmsted, J. Phys. II 4, 2215 (1994).

    CAS  Google Scholar 

  18. M. Warner, E.M. Terentjev, Prog. Polym. Sci. 21, 853 (1996).

    CAS  Google Scholar 

  19. O. Stenull, T.C. Lubensky, Europhys. Lett. 61, 776 (2003).

    CAS  ADS  Google Scholar 

  20. J. Küpfer, E. Nishikawa, H. Finkelmann, Polym. Adv. Techn. 5, 110 (1994).

    Google Scholar 

  21. H.R. Brand, H. Pleiner, Physica A 208, 407 (1994).

    ADS  Google Scholar 

  22. P.G. de Gennes in Liquid Crystals of One- and Two-Dimensional Order, edited by W. Helfrich, G. Heppke (Springer, Berlin Heidelberg, 1980) pp. 231-237.

  23. P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, H.R. Brand, Eur. Phys. J. E 14, 311 (2004).

    CAS  PubMed  Google Scholar 

  24. E.M. Terentjev, M. Warner, Eur. Phys. J. E 14, 323 (2004).

    CAS  PubMed  Google Scholar 

  25. P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, H.R. Brand, Eur. Phys. J. E 14, 329 (2004).

    Article  CAS  Google Scholar 

  26. O. Stenull, T.C. Lubensky, Eur. Phys. J. E 14, 333 (2004).

    CAS  PubMed  Google Scholar 

  27. P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, H.R. Brand, Eur. Phys. J. E 14, 339 (2004).

    CAS  Google Scholar 

  28. E. Nishikawa, H. Finkelmann, H.R. Brand, Makromol. Chem., Rapid Commun. 18, 65 (1997).

    CAS  Google Scholar 

  29. E.M. Terentjev, M. Warner, R.B. Meyer, J. Yamamoto, Phys. Rev. E 60, 1872 (1999).

    CAS  ADS  Google Scholar 

  30. C.-C. Chang, L.-C. Chien, R.B. Meyer, Phys. Rev. E 56, 595 (1997).

    CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, O., Brand, H.R. Undulation versus Frederiks instability in nematic elastomers in an external electric field. Eur. Phys. J. E 17, 53–62 (2005). https://doi.org/10.1140/epje/i2004-10105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10105-2

PACS.

Navigation