Skip to main content
Log in

Statistical theory of force-induced unzipping of DNA

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The unzipping transition under the influence of external force of a dsDNA molecule has been studied using the Peyrard-Bishop Hamiltonian. The critical force Fc(T) for unzipping calculated in the constant force ensemble is found to depend on the potential parameter k which measures the stiffness associated with a single strand of DNA and on D, the well depth of the on-site potential representing the strength of hydrogen bonds in a base pair. The dependence on temperature of Fc(T) is found to be (TD - T)1/2 (TD being the thermal denaturation temperature) with Fc(TD) = 0 and Fc(0) = \( \sqrt{{2kD}}\). We used the constant extension ensemble to calculate the average force F(y) required to stretch a base pair a y distance apart. The value of F(y) needed to stretch a base pair located far away from the ends of a dsDNA molecule is found twice the value of the force needed to stretch a base pair located at one of the ends to the same distance for y ≥ 1.0  Å. The force F(y) in both cases is found to have a very large value for y ≈ 0.2  Å compared to the critical force found from the constant force ensemble to which F(y) approaches for large values of y. It is shown that the value of F(y) at the peak depends on the value of kρ which measures the energy barrier associated with the reduction in DNA strand rigidity as one passes from dsDNA to ssDNA and on the value of the depth of the on-site potential. The effect of defects on the position and height of the peak in the F(y) curve is investigated by replacing some of the base pairs including the one being stretched by defect base pairs. The formation and behaviour of a loop of Y shape when one of the ends base pair is stretched and a bubble of ssDNA with the shape of “an eye” when a base pair far from ends is stretched are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.V. Yakushevich, Nonlinear Physics of (John Wiley & Sons, 1998).

  2. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Moleculer Biology of the Cell, 3rd edition (Garland Press, New York, 1994).

  3. R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985).

    CAS  Google Scholar 

  4. K. Svoboda, S.M. Black, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994)

    CAS  PubMed  Google Scholar 

  5. A. Kishiro, T. Yanagida, Nature (London) 34, 74 (1988).

    Google Scholar 

  6. G. Hansma, J. Vac. Sci. Technol 14, 1390 (1995).

    Google Scholar 

  7. B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. U.S.A. 94 11935 (1997)

  8. S.M. Bhattacharjee, D. Marenduzzo, J. Phys. A 35 L349 (2002).

  9. D.K. Lubensky, D.R. Nelson, Phys. Rev. E 65, 031917 (2002)

    Google Scholar 

  10. D. Anselmetti, J. Fritz, B. Smith, X. Fernandez-Busquets, Single Mol. 1, 53 (2001).

    Google Scholar 

  11. C. Danilcowicz, Proc. Natl. Acad. Sci. U.S.A. 100, 1694 (2003).

    PubMed  Google Scholar 

  12. Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)

    CAS  PubMed  Google Scholar 

  13. M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).

    CAS  PubMed  Google Scholar 

  14. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, R44 (1993).

  15. S. Cocco, R. Monasson, Phys. Rev. Lett. 83, 5178 (1999)

    CAS  Google Scholar 

  16. R.E. Thompson, E.D. Siggia, Europhys. Lett. 31, 335 (1995)

    CAS  Google Scholar 

  17. S.M. Bhattacharjee, J. Phys. A 33, L423 (2000)

  18. S. Cocco, R. Monasson, J.F. Marko, Proc. Natl. Acad. Sci. U.S.A. 98, 8608 (2001).

    CAS  PubMed  Google Scholar 

  19. S. Cocco, R. Monasson, J.F. Marko, Phys. Rev. E 65, 041907 (2002).

    Google Scholar 

  20. D. Marenduzzo, Phys. Rev. Lett. 88, 28102 (2002).

    CAS  Google Scholar 

  21. Navin Singh, Yashwant Singh, Phys. Rev. E 64, 042901 (2001).

    CAS  Google Scholar 

  22. A. Campa, A. Giansanti, Phys. Rev. E 58, 3585 (1998).

    CAS  Google Scholar 

  23. N. Theodorakopoulos, T. Dauxois, M. Peyrard, Phys. Rev. Lett. 85, 6 (2000).

    CAS  PubMed  Google Scholar 

  24. T. Dauxois, M. Peyrard, Phys. Rev. E 51, 4027 (1995).

    CAS  Google Scholar 

  25. Yong-li Zhang, Wei-Mou Zheng, Ji-Xing Liu, Y.Z. Chen, Phys. Rev. E 56, 7100 (1997).

    CAS  Google Scholar 

  26. M. Barbi, S. Lepri, M. Peyrard, N. Theodorakopoulos Phys. Rev. E 68, 061909 (2003).

    Google Scholar 

  27. P.M. Morse, Phys. Rev. 34, 57 (1929).

    CAS  Google Scholar 

  28. C. Danilcowicz, cond-mat/0310633.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Singh, Y. Statistical theory of force-induced unzipping of DNA. Eur. Phys. J. E 17, 7–19 (2005). https://doi.org/10.1140/epje/i2004-10100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10100-7

PACS.

Navigation