Skip to main content
Log in

Spherical polyelectrolyte block copolymer micelles: Structural change in presence of monovalent salt

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Spherical polyelectrolyte block copolymer micelles were investigated as a function of added NaCl salt concentration using Small-Angle Neutron Scattering (SANS) and Light Scattering (LS). The micelles are formed by the self-association of charged-neutral copolymers made of a long deuterated polyelectrolyte moiety (NaPSSd)251 and a short hydrophobic moiety (PEP)52. In presence of salt, the core shape and the aggregation number of the micelles are not affected. The hydrodynamic radius of the micelle is found to be identical to the radius of the whole micelle deduced from neutron scattering and thus the hydrodynamic radius is a valid measure of the corona thickness. At the lowest salt concentrations investigated the thickness of the corona, Rs, remains essentially constant and a contraction is observed above an added-salt concentration cs of 2×10-2 M where this crossover concentration corresponds to the average ionic strength of the free counterions in the corona. The contraction takes place while maintaining a rod-like behavior of the chains at short scale and obeys to: Rscs-0.18. The exponent 0.18 suggests an electrostatic persistence length proportional to the Debye screening length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Raviv, S. Giasson, N. Kampf, J.F. Gohy, R. Jérôme, J. Klein, Nature 425, 163 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. A. Albersdörfer, E. Sackmann, Eur. Phys. J. B 10, 663 (1999).

    Article  Google Scholar 

  3. A. Constancis, R. Meyrueix, N. Bryson, S. Huille, J.M. Grosselin, T. Gulik-Krzywicki, G. Soula, J. Colloid Interface Sci. 217, 357 (1999).

    Article  Google Scholar 

  4. P. Pincus, Macromolecules 24, 2912 (1991).

    CAS  Google Scholar 

  5. J.W. Mays, Polym. Commun. 31, 170 (1990).

    Google Scholar 

  6. P. Guenoun, H.T. Davis, J.W. Mays, M. Tirrell, Macromolecules 29, 3965 (1996).

    Article  Google Scholar 

  7. R. Hariharan, C. Biver, J.W. Mays, W.B. Russel, Macromolecules 31, 7506 (1998).

    Article  Google Scholar 

  8. M. Balastre, F. Li, P. Schorr, J. Yang, J.W. Mays, M.V. Tirrell, Macromolecules 35, 9480 (2002).

    Article  Google Scholar 

  9. P. Guenoun, F. Muller, M. Delsanti, L. Auvray, Y.J. Chen, J.W. Mays, M. Tirrell, Phys. Rev. Lett. 81, 3872 (1998).

    Article  Google Scholar 

  10. O.V. Borisov, E.B. Zhulina, Eur. Phys. J. B 4, 205 (1998).

    Google Scholar 

  11. N. Dan, M. Tirrell, Macromolecules 28, 4310 (1993).

    Google Scholar 

  12. P. Guenoun, A. Schalchli, D. Sentenac, J.W. Mays, J.J. Benattar, Phys. Rev. Lett. 74, 3628 (1995).

    Article  Google Scholar 

  13. J.R.C. van der Maarel, W. Groenewegen, S.U. Egelhaaf, A. Lapp, Langmuir 16, 7510 (2000).

    Article  Google Scholar 

  14. S. Förster, N. Hermsdorf, C. Böttcher, P. Lindner, Macromolecules 35, 4096 (2002).

    Article  Google Scholar 

  15. P.L. Valint, J. Bock, Macromolecules 21, 175 (1988).

    Google Scholar 

  16. F. Muller, M. Delsanti, L. Auvray, J. Yang, Y.J. Chen, J. Mays, B. Demé, M. Tirrell, P. Guenoun, Eur. Phys. J. E 3, 45 (2000).

    Article  Google Scholar 

  17. http://www-llb.cea.fr/.

  18. http://www.ill.fr.

  19. F. Muller, PhD Thesis, Université La Rochelle, available at http://www.drecam.cea.fr/articles/s00/124/.

  20. See, for instance, B. Chu, Laser Light Scattering, second edition (Academic Press, Inc. New York, 1991).

  21. P. Guenoun, M. Delsanti, D. Gazeau, L. Auvray, D.C. Cook, J.W. Mays, M. Tirrell, Eur. Phys. J. B 1, 77 (1998).

    Google Scholar 

  22. M. Roger, P. Guenoun, F. Muller, L. Belloni, M. Delsanti, Eur. Phys. J. E 9, 313 (2002).

    Google Scholar 

  23. See, for instance, R.D. Wesley, T. Cosgrove, L. Thompson, S.P. Armes, N.C. Billingham, F.L. Baines, Langmuir 16, 4467 (2000)

    Article  Google Scholar 

  24. J. des Cloizeaux, Macromolecules 6, 403 (1973).

    Google Scholar 

  25. L. Belloni, J. Chem. Phys. 119, 7560 (2003).

    Article  Google Scholar 

  26. J.L. Barrat, J.F. Joanny, Adv Chem. Phys. 94, 1 (1996).

    Google Scholar 

  27. T. Odijk, A.C. Houwaart, J. Polym. Sci. 16, 627 (1978).

    Google Scholar 

  28. T. Odijk, J. Polym. Sci. 15, 477 (1977)

    Article  Google Scholar 

  29. J.L. Barrat, J.F. Joanny, Europhys. Lett. 24, 333 (1993).

    Google Scholar 

  30. J.F. Argillier, M. Tirrell, Theor. Chim. Acta 82, 343 (1992).

    Google Scholar 

  31. M. Tricot, Macromolecules 17, 1698 (1984)

    Google Scholar 

  32. O.V. Borisov, E.B. Zhulina, Macromolecules 35, 4472 (2002).

    Article  Google Scholar 

  33. E. Dubois, F. Boué, Macromolecules 34, 3684 (2001).

    Article  Google Scholar 

  34. J.G. Kirkwood, J.J. Riseman, J. Chem. Phys. 16, 565 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guenoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, F., Guenoun, P., Delsanti, M. et al. Spherical polyelectrolyte block copolymer micelles: Structural change in presence of monovalent salt. Eur. Phys. J. E 15, 465–472 (2004). https://doi.org/10.1140/epje/i2004-10079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10079-y

PACS.

Navigation