Skip to main content
Log in

The properties of free polymer surfaces and their influence on the glass transition temperature of thin polystyrene films

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a detailed study of free polymer surfaces and their effects on the measured glass transition temperature (Tg) of thin polystyrene (PS) films. Direct measurements of the near-surface properties of PS films are made by monitoring the embedding of 10 and 20 nm diameter gold spheres into the surface of spin-cast PS films. At a temperature T = 378K( > Tg), the embedding of the spheres is driven by geometrical considerations arising from the wetting of the gold spheres by the PS. At temperatures below Tg ( 363K < T < 370K), both sets of spheres embed 3-4 nm into the PS films and stop. These studies suggest that a liquid-like surface layer exists in glassy PS films and also provide an estimate for the lower bound of the thickness of this layer of 3-4 nm. This qualitative idea is supported by a series of calculations based upon a previously developed theoretical model for the indentation of nanoscale spheres into linear viscoelastic materials. Comparing data with simulations shows that this surface layer has properties similar to those of a bulk sample of PS having a temperature of 374 K. Ellipsometric measurements of the Tg are also performed on thin spin-cast PS films with thicknesses in the range 8nm < h < 290nm. Measurements are performed on thin PS films that have been capped by thermally evaporating 5 nm thick metal (Au and Al) capping layers on top of the polymer. The measured Tg values (as well as polymer metal interface structure) in such samples depend on the metal used as the capping layer, and cast doubt on the general validity of using evaporative deposition to cover the free surface. We also prepared films that were capped by a new non-evaporative procedure. These films were shown to have a Tg that is the same as that of bulk PS (370±1 K) for all film thicknesses measured (> 7 nm). The subsequent removal of the metal layer from these films was shown to restore a thickness-dependent Tg in these samples that was essentially the same as that observed for uncapped PS films. An estimate of the thickness of the liquid-like surface layer was also extracted from the ellipsometry measurements and was found to be 5±1 nm. The combined ellipsometry and embedding studies provide strong evidence for the existence of a liquid-like surface layer in thin glassy PS films. They show that the presence of the free surface is an important parameter in determining the existence of Tg reductions in thin PS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eur. Phys. J. E 8, (2002).

  2. J.A. Forrest, Eur. Phys. J. E 8, 261 (2002).

    Google Scholar 

  3. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Google Scholar 

  4. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. Chem. Soc. 98, 219 (1994).

    Article  Google Scholar 

  5. L. Hartmann, J. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).

    Article  Google Scholar 

  6. J.S. Sharp, J.A. Forrest, Phys. Rev. E 67, 031805 (2003).

    Article  Google Scholar 

  7. Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).

    Google Scholar 

  8. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).

    Article  Google Scholar 

  9. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  Google Scholar 

  10. K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001).

    Article  Google Scholar 

  11. P.G. deGennes, Eur. Phys. J. E. 2, 201 (2000).

    Google Scholar 

  12. J.A. Forrest, J. Mattsson, Phys. Rev. E. 61, R53 (2000).

  13. J. Mattsson, J.A. Forrest, L Borjesson, Phys. Rev. E 62, 5187 (2000).

    Article  Google Scholar 

  14. S. Herminghaus, K. Jacobs, R. Seeman, Eur. Phys. J. E. 5, 531 (2001).

    Article  Google Scholar 

  15. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371, (2001).

    Article  Google Scholar 

  16. K.L. Ngai, J. Phys. IV 10, Pr7-221 (2000).

    Google Scholar 

  17. J. Hammerschmidt, W. Gladfelter, G. Haugstad, Macromolecules 32, 3360 (1999).

    Article  Google Scholar 

  18. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85, 2340 (2000).

    Article  Google Scholar 

  19. Z. Fakhraai, J. Forrest, unpublished.

  20. M. Hamdorf, D. Johannsmann, J. Chem. Phys. 112, 4262 (2000).

    Article  Google Scholar 

  21. T. Kerle, Z.Q. Lin, H.C. Kim, T.P. Russell, Macromolecules 34, 3484 (2001).

    Article  Google Scholar 

  22. H. Fischer, Macromolecules 35, 3592 (2002).

    Article  Google Scholar 

  23. H. van Melick, A. van Dijken, J. den Toonder, L. Govaert, H. Meijer, Philos. Mag. A 82, 2093 (2002).

    Article  Google Scholar 

  24. J.A. Forrest, J. Mattsson, L. Borgesson, Eur. Phys. J. E 8, 129 (2002).

    Google Scholar 

  25. V. Zaporojtchenko, T. Strunskus, J. Erichsen, F. Faupel, Macromolecules 34, 1125 (2001).

    Article  Google Scholar 

  26. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 051807 (2001).

    Article  Google Scholar 

  27. J.H. Teichroeb, J.A. Forrest, Proc. Symp. Mat. Res. Soc. 734, B3.2.1 (2001).

  28. J.H. Teichroeb, J.A. Forrest, Phys. Rev. Lett. 91, 016104 (2003).

    Article  Google Scholar 

  29. V.M. Rudoy, Colloid J. 64, 746 (2002).

    Article  Google Scholar 

  30. S. Kawana, R.A.L. Jones, Phys. Rev. E. 63, 021501 (2001).

    Article  Google Scholar 

  31. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  32. D.R. Lide (Editor), CRC: Handbook of Chemistry and Physics, 74th edition (CRC Press, London, 1993-1994).

  33. H. Kim, A. Rühm, L.B. Lurio, J.K. Basu, J. Lal, D. Lumma, S.G. J. Mochrie, S.K. Sinha, Phys. Rev. Lett. 90, 068302 (2003).

    Article  Google Scholar 

  34. D.S. Rimai, D.M. Schaefer, R.C. Bowen, D.J. Quesnel, Langmuir 18, 4592 (2002).

    Article  Google Scholar 

  35. F.M. Orr, L.E. Scriven, A.P. Rivas, J. Fluid Mech. 67, 723 (1975).

    Google Scholar 

  36. J. Brandrup, E.H. Immergut, E.A. Grulke (Editors), Polymer Handbook, 4th edition (Wiley-Interscience, New Jersey, 1999).

  37. B. Du, O.K.C. Tsui, Q. Zhang, T. He, Langmuir 17, 3286 (2001).

    Article  Google Scholar 

  38. E.H. Lee, J.R.M. Radok, J. Appl. Mech. 27, 438 (1960).

    Google Scholar 

  39. H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan, Mech. Time-Dependent Mater. 7, 189 (2003).

    Article  Google Scholar 

  40. D.J. Plazek, V.M. O’Rourke, J. Polym. Sci. A-2 9, 209 (1971).

    Article  Google Scholar 

  41. D.J. Plazek, private communication.

  42. J.S. Sharp, J.A.Forrest, Phys. Rev. Lett. 91, 235701 (2003).

    Article  Google Scholar 

  43. F. Faupel, R. Willecke, A. Thran, Mater. Sci. Eng. Rep. 22, 1 (1998).

    Article  Google Scholar 

  44. D.H. Cole, K.R. Shull, P. Baldo, L. Rehn, Macromolecules 32, 771 (1999).

    Article  Google Scholar 

  45. T. Strunskus, M. Keine, R. Willecke, A. Thran, C.V. Bechtolsheim, F. Faupel. Mater. Corr. 49, 180 (1998).

    Article  Google Scholar 

  46. T. Strunskus, V. Zaporojtchenko, K. Behnke, C.V. Bechtolsheim, F. Faupel., Adv. Eng. Mater. 22, 489 (2000).

    Article  Google Scholar 

  47. F.K. LeGoues, B.D. Silverman, P.S. Ho, J. Vac. Sci. Technol. A 6, 2200 (1988).

    Article  Google Scholar 

  48. X. Zheng, Phys. Rev. Lett. 79, 241 (1997).

    Article  Google Scholar 

  49. G. Reiter, U. Steiner, J. Phys. II 1, 659 (1991).

    Article  Google Scholar 

  50. T.P. Russell, A. Karim, A. Mansour, G.P. Felcher, Macromolecules 21, 1890 (1988).

    Google Scholar 

  51. A. Karim, G.P. Felcher, T.P. Russell, Macromolecules 27, 6973 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, J.S., Teichroeb, J.H. & Forrest, J.A. The properties of free polymer surfaces and their influence on the glass transition temperature of thin polystyrene films. Eur. Phys. J. E 15, 473–487 (2004). https://doi.org/10.1140/epje/i2004-10078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10078-0

PACS.

Navigation