Skip to main content
Log in

Heterogeneous nature of the dynamics and glass transition in thin polymer films

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Recent experiments have demonstrated that the dynamics in liquids close to and below the glass transition temperature is strongly heterogeneous, on the scale of a few nanometers. We use here a model proposed recently for explaining these features, and show that the heterogeneous nature of the dynamics has important consequences when considering the dynamics of thin films. We show how the dominant relaxation time in a thin film is changed as compared to the bulk, as a function of the thickness, the interaction energy with the substrate, and the temperature. The corresponding time scales cover the so-called VFT (or WLF) regime and vary between 10-8 s to 104 s typically. In the absence of interaction, our model allows for interpreting suspended films experiments, in the case of small polymers for which the data do not depend on the polymer weight. The interaction leads to an increase of \(T_{\rm g}\) for an interaction per monomer of the order of the thermal energy T. This increase saturates at the value corresponding to strongly interacting films for adsorption energies slightly larger and still of order T. In particular, we predict that the \(T_{\rm g}\) shift can be non-monotonous as a function of the film thickness, in the case of intermediate interaction strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).

    Article  Google Scholar 

  2. C.A. Angell, Science 267, 1924 (1995).

    CAS  Google Scholar 

  3. J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., 1980).

  4. K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991).

    Article  Google Scholar 

  5. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).

    Article  Google Scholar 

  6. S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess, M.D. Ediger, J. Chem. Phys. 114, 7299 (2001).

    Article  Google Scholar 

  7. M.T. Cicerone, F.R. Blackburn, M.D. Ediger, Macromolecules 28, 8224 (1995).

    Google Scholar 

  8. C.-Y. Wang, M.D. Ediger, Macromolecules 30, 4770 (1997).

    Article  Google Scholar 

  9. M.T. Cicerone, P.A. Wagner, M.D. Ediger, J. Phys. Chem. B 101, 8727 (1997).

    Article  Google Scholar 

  10. C.-Y. Wang, M.D. Ediger, J. Phys. Chem. B 103, 4177 (1999).

    Article  Google Scholar 

  11. C.-Y. Wang, M.D. Ediger, J. Chem. Phys. 112, 6933 (2000).

    Article  Google Scholar 

  12. Y. Hwang, T. Inoue, P.A. Wagner, M.D. Ediger, J. Polym. Sci. 38, 68 (2000).

    Article  Google Scholar 

  13. F. Fujara, B. Geil, H. Sillescu, G. Fleischer, Z. Phys. B. 88, 195 (1992).

    Google Scholar 

  14. I. Chang, F. Fujara, B. Geil, G. Heuberger, T. Mangel, H. Sillescu, J. Non-Cryst. Solids 172-174, 248 (1994).

    Google Scholar 

  15. B. Schiener, Böhmer R., A. Loidl, R.V. Chamberlin, Science 274, 752 (1996).

    Article  Google Scholar 

  16. R. Richert, J. Chem. Phys. 113, 8404 (2000).

    Article  Google Scholar 

  17. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

    Article  Google Scholar 

  18. M.D. Ediger, Annu. Rev. Chem. 51, 99 (2000).

    Article  Google Scholar 

  19. R. Richert, J. Phys. Condens. Matter 14, R703 (2002).

  20. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Google Scholar 

  21. J.A. Forrest, Eur. Phys. J. E 8, 261 (2002).

    Google Scholar 

  22. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Google Scholar 

  23. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002; 4108 (1996).

    Article  Google Scholar 

  24. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E. 56, 5705 (1997).

    Article  Google Scholar 

  25. J.A. Forrest, C. Svanberg, Révész K., M. Rodahl, L.M. Torell, B. Kasemo, Phys. Rev. E 58, R1226 (1998).

  26. K. Dalnoki-Veress, B.G. Nickel, C.B. Roth, J.R. Dutcher, Phys. Rev. E. 59, 2153 (1999).

    Article  Google Scholar 

  27. K. Fukao, Y. Miyamoto, Phys. Rev. E. 61, 1743 (2000).

    Article  Google Scholar 

  28. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).

  29. J. Mattsson, J.A. Forrest and Börjesson L., Phys. Rev. E. 62, 5187 (2000).

    Article  Google Scholar 

  30. S. Kawana, R.A.L. Jones, Phys. Rev. E. 63, 021501 (2001).

    Article  Google Scholar 

  31. K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E. 63, 031801 (2001).

    Article  Google Scholar 

  32. L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).

    Article  Google Scholar 

  33. J.Q. Pham, P.F. Green, J. Chem. Phys. 116, 5801 (2002).

    Article  Google Scholar 

  34. J.Q. Pham, P.F. Green, Macromolecules 36, 1665 (2003).

    Article  Google Scholar 

  35. C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003).

    Article  Google Scholar 

  36. J.S. Sharp, J.A. Forrest, Phys. Rev. E 67, 031805 (2003).

    Article  Google Scholar 

  37. W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995).

  38. J.H. van Zanten, W.E. Wallace, W.L. Wu, Phys. Rev. E 53, R2053 (1996).

  39. Y. Grohens, M. Brogly, C. Labbe, M.-O. David, J. Schultz, Langmuir 14, 2929 (1998).

    Article  Google Scholar 

  40. P. Carriere, Y. Grohens, J. Spevacek, J. Schultz, Langmuir 16, 5051 (2000).

    Article  Google Scholar 

  41. Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).

    Google Scholar 

  42. D.S. Fryer, E.J. Peters, J.E. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W. Wu, Macromolecules 34, 5627 (2001).

    Article  Google Scholar 

  43. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).

    Article  Google Scholar 

  44. O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2002).

    Article  Google Scholar 

  45. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85, 2340 (2000).

    Article  Google Scholar 

  46. K. Tanaka, A. Takahara, T. Kajiyama, Macromolecules 33, 7588 (2000).

    Article  Google Scholar 

  47. J.A. Hammerschmidt, W.L. Gladfelter, G. Haugstad, Macromolecules 32, 3360 (1999).

    Article  Google Scholar 

  48. J. Berriot, H. Montés, F. Lequeux, D. Long, P. Sotta, Macromolecules 35, 9756 (2002).

    Article  Google Scholar 

  49. J. Berriot, H. Montés, F. Lequeux, D. Long, P. Sotta, Europhys. Lett. 64, 50 (2003).

    Article  Google Scholar 

  50. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  51. S. Merabia, D. Long, Eur. Phys. J. E 9, 195 (2002).

    Google Scholar 

  52. C.T. Moynihan, J.-H. Wang, Mater. Rec. Soc. Symp. Proc. 455, 133 (1997).

    Google Scholar 

  53. M.D. Ediger, J. Non-Cryst. Solids 235-237, 10 (1998).

  54. G.S. Grest, M.H. Cohen, Adv. Chem. Phys. 48, 455 (1981).

    Google Scholar 

  55. Götze W. and Sjögren L., Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  56. G. Tarjus, D. Kivelson, Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales, edited by S.A. Edwards Liu, S. Nagel (Taylor and Francis, 2001).

  57. R. Yamamoto, A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).

    Article  Google Scholar 

  58. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

    Article  Google Scholar 

  59. C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001).

    Article  Google Scholar 

  60. F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Google Scholar 

  61. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002).

    Article  Google Scholar 

  62. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004).

    Article  Google Scholar 

  63. S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).

    Google Scholar 

  64. P.-G. De Gennes, Eur. Phys. J. E 2, 201 (2000).

    Google Scholar 

  65. J.E. Mark, Physical Properties of Polymers Handbook (American Institute of Physics, 1996).

  66. T. Inoue, H. Hayashihara, H. Okamoto, K. Osaki, J. Polym. Sci. 30, 409 (1992).

    Article  Google Scholar 

  67. E. Hempel, G. Hempel, A. Hensel, C. Schick, E. Donth, J. Phys. Chem. B 104, 2460 (2000).

    Article  Google Scholar 

  68. G.W. Scherer, Relaxation in Glass and Composites (John Wiley and Sons, New York, 1986).

  69. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover Publications, Inc., New York, 1967).

  70. B.J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

  71. A. Brodin, R. Bergman, J. Mattsson, Rössler E.A., Eur. Phys. J. B 36, 349 (2003).

    Google Scholar 

  72. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press London, 1994).

  73. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. Lett. 88, 098301 (2002); Phys. Rev. E 67, 031406 (2003).

    Article  Google Scholar 

  74. W.C.K. Poon, J. Phys. Condens. Matter 14, R859 (2002).

  75. W.C.K. Poon, M.D. Haw, Adv. Colloid Interface Sci. 73, 71 (1997).

    Article  Google Scholar 

  76. H. Verduin, J.K.G. Dhont, J. Colloid Interface Sci. 172, 425 (1995).

    Article  Google Scholar 

  77. A.P. Gast, W.B. Russel, C.K. Hall, J. Colloid Interface Sci. 109, 161 (1986).

    Article  Google Scholar 

  78. R.H. Colby, J.R. Gillmor, M. Rubinstein, Phys. Rev. E 48, 3712 (1993).

    Article  Google Scholar 

  79. M. Rubinstein, R.H. Colby, Macromolecules 27, 3184 (1994).

    Google Scholar 

  80. M.C. Grant, W.B. Russel, Phys. Rev. E 47, 2606 (1993).

    Article  Google Scholar 

  81. S.K. Kumar, J.F. Douglas, Phys. Rev. Lett. 87, 188301 (2001).

    Article  Google Scholar 

  82. L. Cipelletti, S. Manley, R.C. Ball, D.A. Weitz, Phys. Rev. Lett. 84, 2275 (2000).

    Article  Google Scholar 

  83. K.G. Soga, J.R. Melrose, R.C. Ball, J. Chem. Phys. 108, 6026 (1998).

    Article  Google Scholar 

  84. A.N. Semenov, M. Rubinstein, Macromolecules 31, 1373 (1998).

    Article  Google Scholar 

  85. M. Rubinstein, A.N. Semenov, Macromolecules 31, 1386 (1998).

    Article  Google Scholar 

  86. M.J. Solomon, P. Varadan, Phys. Rev. E 63, 051402 (2001).

    Article  Google Scholar 

  87. P. Sotta, D. Long, Eur. Phys. J. E 11, 375 (2003).

    Google Scholar 

  88. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

  89. L.E. Nielsen, R.F. Landel, Mechanical Properties of Polymers and Composites (Marcel Dekker, New York, 1994).

  90. D.C. Edwards, J. Mater. Sci. 25, 4175 (1990).

    Google Scholar 

  91. J.N. Israelachvili Intermolecular and Surface Forces (Academic Press, London, 1992).

  92. T. Sasaki, A. Shimizu, T.H. Mourey, C.T. Thurau, M.D. Ediger, J. Chem. Phys. 119, 8730 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Long.

Additional information

Received: 1 July 2004, Published online: 26 October 2004

PACS:

64.70.Pf Glass transitions - 61.41. + e Polymers, elastomers, and plastics - 68.15. + e Liquid thin films

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabia, S., Sotta, P. & Long, D. Heterogeneous nature of the dynamics and glass transition in thin polymer films. Eur. Phys. J. E 15, 189–210 (2004). https://doi.org/10.1140/epje/i2004-10047-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10047-7

Keywords

Navigation