Skip to main content
Log in

Monte Carlo simulation of particle aggregation and gelation: I. Growth, structure and size distribution of the clusters

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Lattice and off-lattice Monte Carlo simulations of diffusion-limited cluster aggregation and gelation were done over a broad range of concentrations. The large-scale structure and the size distribution of the clusters are characterized by a crossover at a characteristic size (\(m_{\rm c}\)). For \(m < m_{\rm c}\), they are the same as obtained in a dilute DLCA process and for \(m \gg m_{\rm c}\) they are the same as obtained in a static percolation process. \(m_{\rm c}\) is determined by the overlap of the clusters and decreases with increasing particle concentration. The growth rate of large clusters is a universal function of time reduced by the gel time. The large-scale structural and temporal properties are the same for lattice and off-lattice simulations. The average degree of connectivity per particle in the gels formed in off-lattice simulations is independent of the concentration, but its distribution depends on the concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Carpineti, F. Ferri, M. Giglio, E. Paganini, U. Perini, Phys. Rev. A 42, 7347 (1990).

    Article  Google Scholar 

  2. T. Nicolai, S. Cocard, Eur. Phys. J. E 5, 221 (2001).

    Article  Google Scholar 

  3. G. Kruif, M. Hoffmann, Faraday Discuss. 101, 185 (1995).

    Article  Google Scholar 

  4. S.H. Chen, J. Rouch, F. Sciortino, P. Tartaglia, J. Phys. Condens. Matter 6, 10855 (1994).

    Article  Google Scholar 

  5. T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1989).

  6. P. Meakin, Phys. Scr. 46, 295 (1992).

    Google Scholar 

  7. M. Kolb, R. Botet, R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Article  Google Scholar 

  8. A. Hasmy, M. Foret, J. Pelous, R. Jullien, Phys. Rev. B 48, 9345 (1993).

    Article  Google Scholar 

  9. M. Lattuada, P. Sandkuhler, H. Wu, J. Sefcik, M. Morbidelli, Adv. Colloid Interface Sci. 103, 33 (2003).

    Article  Google Scholar 

  10. P. Meakin, F. Family, Phys. Rev. A 38, 2110 (1988).

    Article  Google Scholar 

  11. A.E. Gonzalez, G. Ramirez-Santiago, J. Colloid Interface Sci. 182, 254 (1996).

    Article  Google Scholar 

  12. R. Jullien, M. Kolb, R. Botet, J. Phys. (Paris) Lett. 45, L211 (1984).

  13. J.C. Gimel, T. Nicolai, D. Durand, J. Sol-Gel Sci. Technol. 15, 129 (1999).

    Article  Google Scholar 

  14. D. Stauffer, A. Aharony, Introduction to Percolation Theory, second edition (Taylor and Francis, London, 1992).

  15. M. Lattuada, H. Wu, A. Hasmy, M. Morbidelli, Langmuir 19, 6312 (2003).

    Article  Google Scholar 

  16. M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, this issue p. \(\bullet\).

  17. J.C. Gimel, D. Durand, T. Nicolai, Phys. Rev. B 51, 11348 (1995).

    Article  Google Scholar 

  18. M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 11, 61 (2003).

    Google Scholar 

  19. S. Torquato, Phys. Rev. Lett. 74, 2156 (1995).

    Article  Google Scholar 

  20. T. Nicolai, D. Durand, J.C. Gimel, in Light Scattering: Principles and Development, edited by W. Brown (Clarendon Press, Oxford, 1996) p. 201.

  21. R. Klein, D.A. Weitz, M.Y. Lin, H.M. Lindsay, R.C. Ball, P. Meakin, Prog. Colloid Polym. Sci. 81, 161 (1990).

    Google Scholar 

  22. T. Nicolai, D. Durand, J.C. Gimel, Phys. Rev. B 50, 16357 (1994).

    Article  Google Scholar 

  23. P. Sandkuhler, J. Sefcik, M. Lattuada, H. Wu, M. Morbidelli, AIChE J. 49, No. 6, 1542 (2003).

    Google Scholar 

  24. G. Odriozola, A. Schmitt, J. Callejas-Fernandez, R. Martinez-Garcia, R. Hidalgo-Alvarez, J. Chem. Phys. 111, 7657 (1999).

    Article  Google Scholar 

  25. M. Von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

    Google Scholar 

  26. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  MATH  Google Scholar 

  27. M. Lattuada, H. Wu, M. Morbidelli, J. Colloid Interface Sci. 268, 96 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Gimel.

Additional information

Received: 27 April 2004, Published online: 26 October 2004

PACS:

64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions - 02.70.Uu Applications of Monte Carlo methods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rottereau, M., Gimel, J.C., Nicolai, T. et al. Monte Carlo simulation of particle aggregation and gelation: I. Growth, structure and size distribution of the clusters. Eur. Phys. J. E 15, 133–140 (2004). https://doi.org/10.1140/epje/i2004-10044-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10044-x

Keywords

Navigation