Skip to main content
Log in

Force response of a viscous liquid in a probe-tack geometry: Fingering versus cavitation

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We perform traction experiments on viscous liquids highly confined between parallel plates, a geometry known as the probe-tack test in the adhesion community. Direct observation during the experiment coupled to force measurement shows the existence of several mechanisms for releasing the stress: while fingering is favored for low traction velocities, low confinement and low viscosity, nucleation of bubbles occurs in the opposite conditions. It is possible to quantitatively predict the transition between the two regimes and, in many respects, describe the shape of the force response. Using a model for purely viscous fluids, we also present a phase diagram for the different force peak regimes that remarkably accounts for the data. Our results show that conspicuous features of the traction curve commonly thought to be characteristic of soft viscoelastic solids like adhesives are already encountered in liquid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creton, P. Fabre, in The Mechanics of Adhesion, edited by D.A. Dilliard, A.V. Pocius (Elsevier, Amsterdam, 2002) p. 535.

  2. For a short review on stickiness, see C. Gay, L. Leibler, Phys. Today 52, 48 (1999).

    Google Scholar 

  3. A. Zosel, Colloid Polym. Sci. 263, 541 (1985).

    Google Scholar 

  4. H. Lakrout, P. Sergot, C. Creton, J. Adhes. 69, 307 (1999).

    Google Scholar 

  5. K.R. Shull, C.M. Flanigan, A.J. Crosby, Phys. Rev. Lett. 84, 3057 (2000).

    Article  Google Scholar 

  6. A. Ghatak, M.K. Chaudhury, V. Shenoy, A. Sharma, Phys. Rev. Lett. 85, 4329 (2000).

    Article  Google Scholar 

  7. S. Poivet, F. Nallet, C. Gay, P. Fabre, Europhys. Lett. 62, 244 (2003).

    Article  Google Scholar 

  8. P.G. Saffman, G.I. Taylor, Proc. R. Soc. London, Ser. A 245, 312 (1958).

    MATH  Google Scholar 

  9. P. Tordjeman, É. Papon, J.-J. Villenave, J. Polym. Sci. B 38, 1201 (2000).

    Article  Google Scholar 

  10. B.A. Francis, R.G. Horn, J. Appl. Phys. 89, 4167 (2001).

    Article  Google Scholar 

  11. D. Derks, A. Lindner, C. Creton, D. Bonn, J. Appl. Phys. 93, 1557 (2003).

    Article  Google Scholar 

  12. M. Tirumkudulu, W.B. Russel, T.J. Huang, Phys. Fluids 15, 1588 (2003).

    Article  Google Scholar 

  13. A. Roy, S. Roy, A.J. Bhattacharyya, S. Banerjee, S. Tarafdar, Eur. Phys. J. B 12, 1 (1999).

    Google Scholar 

  14. J.J. Bikerman, J. Colloid Sci. 2, 163 (1947).

    Google Scholar 

  15. A. Berker, in The Mechanics of Adhesion, edited by D.A. Dilliard, A.V. Pocius (Elsevier, Amsterdam, 2002) p. 443.

  16. M.J. Shelley, F.-R. Tian, K. Wlodarski, Nonlinearity 10, 1471 (1997).

    Article  MATH  Google Scholar 

  17. C. Gay, L. Leibler, Phys. Rev. Lett. 82, 936 (1999).

    Article  Google Scholar 

  18. G. de Crevoisier, PhD Thesis, Université Paris 6 (1999).

  19. Note that, if the indenter is locally spherical (radius R) and entirely immersed in the fluid [10], the differential equation ([5]) becomes \( 6\pi \eta R^2\frac{\dot{h}}{h}=K[V t+h_0-h]. \) Using the following modified compliance\/ and cavitation\/ indices (see Eqs. ([17]) and ([18])) \( C^{\rm JKR}\equiv\frac{\eta\,R^2\,V}{K\,h_0^2}, \qquad \Pi^{\rm JKR}\equiv\frac{\eta\,R\,V}{h_0^2\,\Delta p}, \) Following the same approach as developed in this Section, one obtains exactly the same diagrams as those presented in Figures [19] and [20].

  20. Equation ([19]) has been numerically solved using Maple V, Waterloo Maple Inc.

  21. http://scilabsoft.inria.fr/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gay.

Additional information

Received: 30 July 2004, Published online: 26 October 2004

PACS:

82.35.Gh Polymers on surfaces; adhesion - 47.55.Bx Cavitation - 83.50.Jf Extensional flow and combined shear and extension

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poivet, S., Nallet, F., Gay, C. et al. Force response of a viscous liquid in a probe-tack geometry: Fingering versus cavitation. Eur. Phys. J. E 15, 97–116 (2004). https://doi.org/10.1140/epje/i2004-10040-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10040-2

Keywords

Navigation