Skip to main content
Log in

Quantitative description of foam drainage: Transitions with surface mobility

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have performed forced drainage experiments on aqueous foams of bubble diameters D varying from 0.18 to 8 mm, and made with different surfactant and protein solutions (providing different surface viscoelastic properties). Changing bubble size or surface properties allows to evolve between two drainage regimes, the respective dimensionless permeabilities also varying with these parameters. We show that the bubble size and surface properties can be incorporated into a single surface mobility parameter that controls the transition between the two drainage regimes. The permeability measurements indicate how do the hydrodynamic resistances of the foam channels and nodes depend on surface mobility. Taking advantage of the large range of experimental conditions, leading to a variation of the mobility parameter over more than 3 decades, a simple and consistent description of both the drainage regimes and the transition in between them is obtained. For the smallest bubbles (D < 0.5 mm) anomalous behaviors are observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, 1999).

  2. D. Weaire, N. Pittet, S. Hutzler, D. Pardal, Phys. Rev. Lett. 71, 2670 (1993).

    Article  Google Scholar 

  3. G. Verbist, D. Weaire, Europhys. Lett. 26, 631 (1994).

    Google Scholar 

  4. R. Phelan, D. Weaire, E.A.J.F. Peters, G. Verbist, J. Phys.: Condens. Matter 8, L475 (1996).

  5. G. Verbist, D. Weaire, A. Kraynik, J. Phys.: Condens. Matter 8, 3715 (1996).

    Article  Google Scholar 

  6. D. Weaire, S. Hutzler, G. Verbist, E.A.J. Peters, Adv. Chem. Phys., 102, 315 (1997).

    Google Scholar 

  7. A. Saint-Jalmes, M.U. Vera, D.J. Durian, Eur. Phys. J. B 12, 67 (1999).

    Article  Google Scholar 

  8. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Phys. Rev. Lett. 82, 4232 (1999)

    Article  Google Scholar 

  9. M. Durand, G. Martinoty, D. Langevin, Phys. Rev. E 60, R6307 (1999).

  10. P.J. Wilde, A.R. Mackie, F.A. Husband, A.P. Gunning, V.J. Morris, A. Fillery-Travis, Proceedings of the international Workshop on Foams and Films, Leuven, Belgium, edited by D. Weaire, J. Banhart (MIT-Verlag, Bremen, 1999) p. 59.

  11. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Langmuir 16, 6327 (2000).

    Article  Google Scholar 

  12. A. Saint-Jalmes, M.U. Vera, D.J. Durian, Europhys. Lett. 50, 695 (2000).

    Article  Google Scholar 

  13. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Europhys. Lett. 54, 335 (2000).

    Article  Google Scholar 

  14. S.J. Cox, D. Weaire, S. Hutzler, J. Murphy, R. Phelan, G. Verbist, Proc. R. Soc. London, Ser. A 456, 2441 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Hutzler, D. Weaire, Philos. Mag. Lett. 80, 419 (2000).

    Article  Google Scholar 

  16. P. Grassia, J.J. Cilliers, S.J. Neethling, E. Ventura-Medina, Eur. Phys. J. E 6, 325 (2001).

    Article  Google Scholar 

  17. M. Safouane, M. Durand, A. Saint-Jalmes, D. Langevin, V. Bergeron, J. Phys. IV. 11, 275 (2001) Pr6.

    Google Scholar 

  18. S.J. Cox, G. Bradley, S. Hutzler, D. Weaire, J. Phys.: Condens. Matter 13, 4863 (2001).

    Article  Google Scholar 

  19. S. Hilgenfeldt, S.A. Koehler, H.A. Stone, Phys. Rev.Lett. 86, 4704 (2001).

    Article  Google Scholar 

  20. S.J. Cox, G. Bradley, D. Weaire, Eur. Phys. J., Appl. Phys. 14, 87 (2001).

    Article  Google Scholar 

  21. M. Durand, D. Langevin, Eur. Phys. J. E 7, 35 (2002).

    Article  Google Scholar 

  22. S.A. Koehler, S. Hilgenfeldt, E.R. Weeks, H.A. Stone, Phys. Rev. E 66, 040601(R) (2002).

    Article  Google Scholar 

  23. A. Saint-Jalmes, D. Langevin, J. Phys.: Condens. Matter 14, 9397 (2002).

    Article  Google Scholar 

  24. P. Grassia, S.J. Neethling, J.J Cilliers, Eur. Phys. J. E 8, 517 (2002).

    Google Scholar 

  25. V. Carrier, S. Destouesse, A. Colin, Phys. Rev. E. 65, 1 (2002).

    Article  MATH  Google Scholar 

  26. S.J Neethling, H.T. Lee, J.J. Cilliers, J. Phys.: Condens. Matter 14, 331 (2002).

    Article  Google Scholar 

  27. M.U. Vera, D.J. Durian, Phys. Rev. Lett. 88, 088304-1 (2002).

    Article  Google Scholar 

  28. D. Weaire, S. Hutzler, S. Cox, N. Kern, M.A. Alonso, W. Drenckhan, J. Phys.: Condens. Matter 15, S65 (2003).

  29. H.A. Stone, S.A. Koehler, S. Hilgenfeldt, M. Durand, J; Phys. Condens. Matter 15, S283 (2003).

  30. S.A. Koehler, S. Hilgenfeldt, E.R. Weeks, H.A. Stone, to be published in J. Colloid Interface Sci.

  31. O. Pitois, C. Fritz, M. Adler, to be published in J. Colloid Interface Sci.

  32. R.A. Leonard, R. Lemlich, AIChE J. 11, 18 (1965).

    Article  Google Scholar 

  33. A. Kraynik (1983) Sandia Report SAND 83-0844.

  34. I.I. Gol’dfarb, K.B. Kann, I.R. Shreiber, Fluid Dyn. 23, 244 (1988).

    Google Scholar 

  35. D. Desai, R. Kumar, Chem. Eng. Sci. 37, 1361 (1982).

    Article  Google Scholar 

  36. A. Nguyen, J. Colloid Interface Sci. 249, 194 (2002)

    Article  Google Scholar 

  37. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, to be published in J. Colloid Interface Sci.

  38. F.G. Gandolfo, H.L. Rosano, J. Colloid Interface Sci. 194, 31 (1997).

    Article  Google Scholar 

  39. P.A. Lemieux, M.U. Vera, D.J. Durian, Phys. Rev. E 57, 4498 (1998).

    Article  Google Scholar 

  40. M.U Vera, A. Saint-Jalmes, D.J Durian, Appl. Optics 40, 4210 (2001).

    Google Scholar 

  41. S. Cox, private communication.

  42. A. Aradian, E. Raphaël, P-G. de Gennes, Europhys. Lett. 55, 834 (2001).

    Article  Google Scholar 

  43. S. Hutzler, D. Weaire, R. Crawford, Europhys. Lett. 41, 461 (1998).

    Article  Google Scholar 

  44. M.U. Vera, A. Saint-Jalmes, D.J. Durian, Phys. Rev. Lett. 84, 3001 (2001).

    Article  Google Scholar 

  45. N.F. Djabbarah, D.T. Wasan, Chem. Eng. Sci. 37, 175 (1982); J.T. Petkov, K.D. Danov, N.D. Denkov, R. Aust, F. Durst, Langmuir 12, 2650 (1996); C. Barentin, C. Ybert, J.M. DiMeglio, J.F. Joanny, J. Fluid. Mech. 397, 331 (1999).

    Article  Google Scholar 

  46. G. Singh, G.J. Hirasaki, C.A. Miller, J. Colloid Interface Sci. 184, 92 (1996).

    Article  MATH  Google Scholar 

  47. S. Stoyanov, N. Denkov, Langmuir 17, 1150 (2001).

    Article  Google Scholar 

  48. O.D. Velev, G.N. Constantinides, D.G. Avraam, A.C. Payatakes, R.P. Borwankar, J. Colloid Interface Sci. 175, 68 (1995).

    Article  Google Scholar 

  49. M. Safouane, A. Saint-Jalmes, V. Bergeron, D. Langevin, submitted to Phys. Fluids.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saint-Jalmes.

Additional information

Received: 29 April 2004, Published online: 21 September 2004

PACS:

82.70.Rr Aerosols and foams - 47.60. + i Flows in ducts, channels, nozzles, and conduits - 47.55.Mh Flows through porous media

Y. Zhang: Present address: Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Jalmes, A., Zhang, Y. & Langevin, D. Quantitative description of foam drainage: Transitions with surface mobility. Eur. Phys. J. E 15, 53–60 (2004). https://doi.org/10.1140/epje/i2004-10036-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10036-x

Keywords

Navigation