Skip to main content
Log in

Monodomain and polydomain helicoids in chiral liquid-crystalline phases and their biological analogues

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Many natural composites exhibit an architecture known as twisted plywood which imparts to them a superior set of physical properties. The origin of this structure is complex and not yet understood. However, it is thought to involve a lyotropic chiral nematic liquid-crystalline mesophase. Indeed, striking structural similarities have been observed and reported between biological fibrous composites and ordered fluids. In this work, a mathematical model based on the Landau-de Gennes theory has been developed to investigate the role played by constraining surfaces in the structural development of a composite material that experiences a liquid-crystalline state during the early steps of its morphogenesis. The goal of this study is to verify the need for an initial constraining surface in the formation of monodomain twisted plywoods as hypothesized by Neville (Tissue & Cell 20, 133 (1988); Biology of Fibrous Composites (Cambridge University Press, 1993)). The numerical simulations qualitatively confirm this theory and highlight the important role that modelling of liquid-crystalline self-assembly plays in the study of tissue morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Neville, Biology of Fibrous Composites (Cambridge University Press, 1993).

  2. Y. Bouligand, Liquid crystalline order in biological materials, in Liquid Crystalline Order in Polymers, edited by A. Blumstein (Academic Press, New York, 1978).

  3. M. Elices, Structural Biological Materials: Design and Structure-Property Relationships (Pergamon, 2000).

  4. M.M. Giraud-Guille, Int. Rev. Cytol. 166, 59 (1996).

    Article  Google Scholar 

  5. M.M. Giraud-Guille, Calcif. Tissue Int. 42, 167 (1988).

    Article  Google Scholar 

  6. S.C. Cowin, J. Biomed. Eng. 122, 533 (2000).

    Google Scholar 

  7. C. Neville, Tissue & Cell 20, 133 (1988).

    Article  Google Scholar 

  8. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Oxford University Press, 1993).

  9. D.C. Wright, N.D. Mermin, Rev. Mod. Phys. 61, 385 (1989).

    Article  ADS  Google Scholar 

  10. M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Oxford University Press, 1987).

  11. A.D. Rey, M.M. Denn, Annu. Rev. Fluid Mech. 34, 233 (2002).

    Article  ADS  Google Scholar 

  12. P.J. Van der Houwen, Appl. Numer. Math. 20, 261 (1996).

    Article  MathSciNet  Google Scholar 

  13. A. Sonnet, A. Kilian, S. Hess, Phys. Rev. E 52, 718 (1995).

    Article  ADS  Google Scholar 

  14. T.W.B. Kibble, J. Phys. A Gen. Phys. 9, 1387 (1976).

    Article  ADS  Google Scholar 

  15. T. Tsuji T., A.D. Rey, Macromol. Theor. Simul. 7, 623 (1998).

    Article  Google Scholar 

  16. P. Crooker, in Chirality in Liquid Crystals, edited by H.-S. Kitzerow, C. Bahr (Springer-Verlag, New York, 2001).

  17. O.D. Lavrentovich, M. Kleman, in Chirality in Liquid Crystals, edited by H.-S. Kitzerow, C. Bahr (Springer-Verlag, New York, 2001).

  18. R.D. Kamien, J.V. Selinger, J. Phys. Condens. Matter 13, R1 (2001).

  19. G.A. Hinshaw, R.G. Petscheck, Phys. Rev. Lett. 60, 1864 (1988).

    Article  ADS  Google Scholar 

  20. S. Faetti, Phys. Rev. A 36, 408 (1987).

    Article  ADS  Google Scholar 

  21. D.W. Berreman, Phys. Rev. Lett. 28, 1983 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Rey.

Additional information

Received: 15 September 2003, Published online: 11 November 2003

PACS:

61.30.-v Liquid crystals - 61.30.Dk Continuum models and theories of liquid crystal structure - 61.30.Mp Blue phases and other defect-phases - 61.30.St Lyotropic phases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, G., Rey, A.D. Monodomain and polydomain helicoids in chiral liquid-crystalline phases and their biological analogues. Eur. Phys. J. E 12, 291–302 (2003). https://doi.org/10.1140/epje/i2002-10164-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2002-10164-3

Keywords

Navigation