Skip to main content
Log in

Viscosity effects in foam drainage: Newtonian and non-newtonian foaming fluids

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 1999)

  • N. Pittet, S. Hutzler, D. Pardal, D. Weaire, Phys. Rev. Lett. 71, 2670 (1993)

    Article  ADS  Google Scholar 

  • D. Weaire, S. Hutzler, G. Verbist, E. Peters, Adv. Chem. Phys. 102, 315 (1997)

    Google Scholar 

  • S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Phys. Rev. Lett. 82, 4232 (1999)

    Article  ADS  Google Scholar 

  • S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Langmuir 16, 6327 (2000)

    Article  Google Scholar 

  • M. Durand, G. Martinoty, D. Langevin, Phys. Rev. E 60, R6037 (1999)

  • S.A. Koehler, S. Hilgenfeldt, E.R. Weeks, H.A. Stone, Phys. Rev. E 66 (2002) 040601(R)

  • A. Saint-Jalmes, D. Langevin, J. Phys. Condens. Mat. 14, 9397 (2002)

    Article  ADS  Google Scholar 

  • H.A. Stone, S.A. Koehler, S. Hilgenfeldt, M. Durand, J. Phys. Condens. Mat. 15, S283 (2003)

  • D. Weaire, S. Hutzler, S. Cox, N. Kern, M.A. Alonso, W. Drenckhan, J. Phys. Condens. Mat. 15, S65 (2003)

  • A. Saint-Jalmes, Y. Zhang, D. Langevin, Eur. Phys. J. E 15, 53 (2004)

    Article  Google Scholar 

  • R.A. Leonard, R. Lemlich, AICh.E. Journal 11, 18 (1965)

    Article  MathSciNet  Google Scholar 

  • S. Stoyanov, C. Dushkin, D. Langevin, D. Weaire, G. Verbist, Langmuir 14, 4663 (1998)

    Article  Google Scholar 

  • M. Safouane, M. Durand, A. Saint-Jalmes, D. Langevin, V. Bergeron, J. Phys. IV (France) 11, Pr6 –275 (2001)

  • H.A. Barnes, J.F. Hutton, K. Walters. An Introduction to Rheology (Amsterdam, Elsevier, 1989)

  • R.B. D Bird, R.C. Armstrong, O. Hassager, Fluid Mechanics, Dynamics of Polymeric Liquids, Vol. 1 (Wiley, New York, 1987); W.D. MacComb, The physics of Fluid turbulence (Clarendon, Oxford, 1990); A. Gyr, H.-W. Bewersdorf, Drag reduction of Turbulent Flows and Additives (Kluwer, Dordrecht, 1995); A. Groisman, V. Steinberg, Phys. Rev. Lett. 77, 1480 (1996); D. Bonn, J. Meunier, Phys. Rev. Lett. 79, 2662 (1997); V. Bergeron, D. Bonn, J.Y. Martin, L. Vovelle, Nature 405, 772 (2000)

    Article  Google Scholar 

  • F.G. Gandolfo, H.L. Rosano, J. Colloid Interface Sci. 194, 31 (1997)

    Article  Google Scholar 

  • S.J. Cox, G. Bradley, S. Hutzler, D. Weaire, J. Phys. Condens. Mat. 13, 4863 (2001)

    Article  ADS  Google Scholar 

  • O. Pitois, C. Fritz, M. Vignes-Adler, Coll. Surf. A 261, 109 (2005)

    Article  Google Scholar 

  • S.A. Koehler, S. Hilgenfeldt, E.R. Weeks, H.A. Stone, J. Colloid Interface Sci. 276, 439 (2004)

    Article  Google Scholar 

  • D. Desai, R. Kumar, Chem. Eng. Sci. 37, 1361 (1982)

    Article  Google Scholar 

  • A.V. Nguyen, J. Colloid Interface Sci. 249, 194 (2001)

    Article  Google Scholar 

  • S.A. Koehler, S. Hilgenfeldt, H.A. Stone, J. Colloid Interface Sci. 276, 420 (2004)

    Article  Google Scholar 

  • M. Durand, D. Langevin, Eur. Phys. J. E 7, 35 (2002)

    Article  MathSciNet  Google Scholar 

  • G. Singh, G.J. Hirasaki, C.A. Miller, J. Colloid Interface Sci. 184, 92 (1996)

    Article  MATH  Google Scholar 

  • R.W. Dexter, Atomization Sprays 6, 167 (1996); F. Durst, R. Haas, B.U. Kaczmar, J. App. Pol. Sci. 26, 3125 (1981); W.M. Kulicke, Ind. Eng. Fundam. 23, 308 (1984)

    Google Scholar 

  • S. Cohen-Addad, J.M. DiMeglio, Langmuir 10, 773 (1994)

    Article  Google Scholar 

  • C.W. Macosko, Extensional Rheometry, in Rheology, Principles, Measurements and Applications (VCH Publishers, New York, 1994)

  • E. Pelletier, C. Viebke, J. Meadows, P. Williams, Langmuir 19, 559 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saint-Jalmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safouane, M., Saint-Jalmes, A., Bergeron, V. et al. Viscosity effects in foam drainage: Newtonian and non-newtonian foaming fluids. Eur. Phys. J. E 19, 195–202 (2006). https://doi.org/10.1140/epje/e2006-00025-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2006-00025-4

PACS.

Navigation