Skip to main content
Log in

Size and viscoelasticity of spatially confined multilamellar vesicles

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We studied viscoelastic properties and scaling behavior of multilamellar vesicles (MLVs) confined between two parallel plates as a function of the shear rate and sample thickness (gap size between parallel plates). The rheological properties are classified into two regimes; the shear-thinning regime at high shear rates and the shear-thickening regime at low shear rates. In the former, the MLV radius results from the mechanical balance between the effective surface tension σeff and viscous stress force. The MLV radius is independent of the gap size. σeff estimated by van der Linden model is 2.1 ±0.15 ×10-4 Nm-1 corresponding to the same value obtained by SANS measurement. Power law exponents for the steady state viscosity and yield stress against pre-shear rate (\(\eta_{\rm ss}\propto\dot\gamma^{-0.69\pm0.04}\), \(\sigma_{\rm y}\propto\dot\gamma^{0.20\pm0.02}\)) well agree with prediction based on the layering of membranes. Therefore, viscoelastic properties in this regime could be modeled by assuming that the dynamics of MLVs are driven by layering of MLV polydomains, which could be accompanied by the viscous dissipation, i.e., the stress relaxation on the MLV, induced by continuous sequence of yields of MLVs. The flow curve is empirically explained by the assumption of a relaxation time for the MLV shape. In the latter, however, scaling laws observed in the shear-thinning regime break down. The MLV radius increases when the gap size is reduced below the threshold value and MLV is no longer formed at very small gap sizes. Different dynamics from the shear-thinning regime seem to dominate the viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • O. Diat, D. Roux, F. Nallet, J. Phys. II (France) 3, 1427 (1993)

    Article  Google Scholar 

  • F. Nettesheim, J. Zipfel, U. Olsson, F. Renth, P. Lindner, W. Richtering, Langmuir 19, 3603 (2003)

    Article  Google Scholar 

  • J. Zipfel, J. Berghausen, P. Lindner, W. Richtering, J. Phys. Chem. B 103, 2841 (1999)

    Article  Google Scholar 

  • L. Courbin, P. Panizza, Phys. Rev. E 69, 021504 (2004)

    Article  ADS  Google Scholar 

  • A.V. Zvelindvsky, E. van der Linden, D. Bedeaux, Physica A 218, 319 (1995)

    Article  ADS  Google Scholar 

  • A.S. Wunenburger, A. Colin, C. Coulon, D. Roux, Eur. Phys. J. E 2, 277 (2000)

    Article  Google Scholar 

  • E. van der Linden, W.T. Horgervorst, H.N.W. Lekkerkerker, Langmuir, 12, 3127 (1996)

  • P.-G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)

  • W. Helfrich, Z. Naturforsch 33a, 305 (1978)

    Google Scholar 

  • P. Panizza, D. Roux, V. Vuillaume, C.-Y.D. Lu, M.E. Cates, Langmuir 12, 248 (1996)

    Article  Google Scholar 

  • J. Leng, F. Nallet, D. Roux, Eur. Phys. J. E 4, 337 (2001)

    Article  Google Scholar 

  • L. Ramos, D. Roux, P.D. Olmsted, M.E. Cates, Europhys. Lett. 66, 888 (2004)

    Article  ADS  Google Scholar 

  • H. Hoffmann, in Structure and Flow in Surfactant Solutions, edited by C.A. Herb, R.K. Prud'homme (ACS Symposium Series 578, Washington, DC 1994)

  • H. von Berlepsch, R. de Vries, Eur. Phys. J. E 1, 141 (2000)

    Article  Google Scholar 

  • J. Zipfel, F. Nettesheim, P. Lindner, T.D. Le, U. Olsson, W. Richtering, Europhys. Lett. 53, 335 (2001)

    Article  Google Scholar 

  • P. Panizza, A. Colin, C. Coulon, D. Roux, Eur. Phys. J. B 4, 65 (1998)

    Article  ADS  Google Scholar 

  • L. Courbin, W. Engle, P. Panizza, Phys. Rev. E 69, 061508 (2004)

    Article  ADS  Google Scholar 

  • S. Mueller, C. Börschig, W. Gronski, C. Schmidt, D. Roux, Langmuir 15, 7558 (1999)

    Article  Google Scholar 

  • C. Meyer, S. Asnacios, C. Bourgaux, M. Kleman, Rheol. Acta 39, 223 (2000)

    Article  Google Scholar 

  • G. Cristobal, J. Rouch, P. Panizza, T. Narayanan, Phys. Rev. E 64, 011505 (2001)

    Article  ADS  Google Scholar 

  • P. Sierro, D. Roux, Phys. Rev. Lett. 78, 1496 (1997)

    Article  ADS  Google Scholar 

  • Y. Iwashita, H. Tanaka, Phys. Rev. Lett. 95, 047801 (2005)

    Article  ADS  Google Scholar 

  • F. Nallet, R. Laversanne, D. Roux, J. Phys. II (France) 3, 487 (1993)

    Article  Google Scholar 

  • F. Nettesheim, I. Grillo, P. Lindner, W. Richtering, Langmuir 20, 3947 (2004)

    Article  Google Scholar 

  • M.-F. Ficheux, A.-M. Bellocq, F. Nallet, J. Phys. II (France) 5, 823 (1995)

    Article  Google Scholar 

  • T.D. Le, U. Olsson, K. Mortensen, J. Zipfel, W. Richtering, Langmuir 17, 999 (2001)

    Article  Google Scholar 

  • E. Orowan, Proc. Phys. Soc. (London) 52, 8 (1940)

    Article  Google Scholar 

  • H.M. Princen, A.D. Kiss, J. Colloid Interf. Sci. 112, 427 (1986); H.M. Princen, A.D. Kiss, J. Colloid Interf. Sci. 128, 176 (1989)

    Article  Google Scholar 

  • M-D. lacasse, G.S. Grest, D. Levine, T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 76, 3448 (1996)

    Article  ADS  Google Scholar 

  • D.M.A. Buzza, C.-Y.D. Lu, M.E. Cates, J. Phys. II (France) 5, 37 (1995)

    Article  Google Scholar 

  • P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997); P. Sollich, Phys. Rev. E. 58, 738 (1998)

    Article  ADS  Google Scholar 

  • M. Fuchs, M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002); Faraday. Disc. 123, 267 (2003); J. Phys. Cond. Matt. 15, S401 (2003)

    Article  ADS  Google Scholar 

  • O. Diat, D. Roux, F. Nallet, Phys. Rev. E 51, 3296 (1995)

    Article  ADS  Google Scholar 

  • L. Ramos, L. Cipelletti, Phys. Rev. Lett. 87, 245503 (2001)

    Article  ADS  Google Scholar 

  • Y. Hemar, R. Hocquart, F. Lequeux, J. Phys. II (France) 5, 1567 (1995)

    Article  ADS  Google Scholar 

  • A.J. Liu, S. Ramaswamy, T.G. Mason, H. Gang, D.A. Weitz, Phys. Rev. Lett. 76, 3017 (1996)

    Article  ADS  Google Scholar 

  • R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, S., Richtering, W. Size and viscoelasticity of spatially confined multilamellar vesicles. Eur. Phys. J. E 19, 139–148 (2006). https://doi.org/10.1140/epje/e2006-00015-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2006-00015-6

PACS.

Navigation