Skip to main content
Log in

Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

To understand the non-equilibrium behavior of colloidal particles with short-range attraction, we studied salt-induced aggregation of lysozyme. Optical microscopy revealed four regimes: bicontinuous texture, ‘beads’, large aggregates, and transient gelation. The interaction of a metastable liquid-liquid binodal and an ergodic to non-ergodic transition boundary inside the equilibrium crystallization region can explain our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.N. Pham et al., Science 296, 104 (2002)

    Google Scholar 

  • W.C.K. Poon, A.D. Pirie, P.N. Pusey, Faraday Discuss. 101, 65 (1995)

    Google Scholar 

  • W.C.K. Poon et al. Faraday Discuss. 112, 143 (1999)

  • L. Starrs, W.C.K. Poon, D.J. Hibberd, M.M. Robins, J. Phys. Condens. Matter 14, 2485 (2002)

    Google Scholar 

  • P.N. Segrè, V. Prasad, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 86, 6042 (2001)

    Google Scholar 

  • J. Bergenholtz, M. Fuchs, J. Phys.: Condens. Matter 11, 10171 (1999)

    Google Scholar 

  • Reviewed in A. Keller, Faraday Discuss. 101, 1 (1995)

    Google Scholar 

  • V.J. Anderson, R.A.L. Jones, Polymer 42, 9601 (2001)

    Google Scholar 

  • M. Muschol, F. Rosenberger, J. Chem. Phys. 103, 10424 (1995)

    Google Scholar 

  • A. Tardieu et al., J. Cryst. Growth 196, 193 (1999)

    Google Scholar 

  • G. Pellicane, D. Costa, C. Caccamo, J. Phys.: Condens. Matter 15, 375 (2003)

    Google Scholar 

  • A. George, W. Wilson, Acta. Crystallogr. D 50, 361 (1994)

    Google Scholar 

  • W.C.K. Poon, Phys. Rev. E 55, 3762 (1997)

    Google Scholar 

  • W.C.K. Poon, S.U. Egelhaaf, P.A. Beales, A. Salonen, J. Phys.: Condens. Matter 12, L569 (2000)

  • M. Muschol, F. Rosenberger, J. Chem. Phys. 107, 1953 (1997)

    Google Scholar 

  • M.D. Haw, W.C.K. Poon, P.N. Pusey, Physica A 208, 8 (1994)

    Google Scholar 

  • A. Hasmy, R. Jullien, Phys. Rev. E 53, 1789 (1996)

    Google Scholar 

  • See, e.g., papers 1-6 in Faraday Discuss. 123 (2003)

  • W.C.K. Poon, Faraday Discuss. 123, 95 (2003); K. Kroy, M.E. Cates, W.C.K. Poon, Phys. Rev. Lett. 92, 148302 (2004)

    Google Scholar 

  • M.A. Miller, D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003)

    Google Scholar 

  • A.M. Kulkarni, N.M. Dixit, C.F. Zukoski, Faraday Discuss. 123, 37 (2003)

    Google Scholar 

  • V.G. Taratuta, A Holschbach, G.M. Thurston, D. Blankschtein, G.B. Benedek, J. Phys. Chem. 94, 2140 (1990)

    Google Scholar 

  • Y.G. Kuznetwov, A.J. Malkin, A. McPherson, J. Cryst. Growth 232, 30 (2001)

    Google Scholar 

  • Correspondingly, salt solution is ‘quenched’ along the path A′A; but the protein concentrations involved are lower, so that we do not discuss processes occurring in the salt-rich parts of our samples

  • S. Hayward, D.W. Heermann, K. Binder, J. Stat. Phys. 49, 1053 (1987)

    Google Scholar 

  • I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  Google Scholar 

  • Comparing results in Bergenholtz99 and Noro suggests that decreasing the attraction range gradually drops NErg below LL

  • M. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000)

    Google Scholar 

  • H. Sedgwick, A. Salonen, S.U. Egelhaaf, W.C.K. Poon, in preparation

  • Note that many previous studies of lysozyme (e.g. Rosenberger97, Taratuta90) used temperature quenches to investigate liquid-liquid phase separation and aggregation. Since the relative positions of the relevant boundaries change with temperature, and observations are quench-path dependent, it is non-trivial to compare our constant-temperature findings to data from temperature quenches. A comprehensive data set covering a range of lysozyme concentrations, salt concentrations, and temperatures is required

  • N.A.M. Verhaegh et al., Physica A 242, 104 (1997)

    Google Scholar 

  • R. Piazza, G. di Pietro, Europhys. Lett. 28, 445 (1994)

    Google Scholar 

  • J.C. Gimel, T. Nicolai, D. Durand, Phys. Rev. E 66, 061405 (2002). Lattice artifacts hamper comparison with simulations, e.g., the effective repulsive and attractive interactions are probably softened

    Google Scholar 

  • J. Groenewold, W.K. Kegel, J. Phys. Chem. 105, 11702 (2001)

    Google Scholar 

  • H. Sedgwick, S.U. Egelhaaf, W.C.K. Poon, J. Phys.: Condens. Matter. 16, S4913 (2004); A. Stradner, Nature 432, 492 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C.K. Poon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedgwick, H., Kroy, K., Salonen, A. et al. Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels. Eur. Phys. J. E 16, 77–80 (2005). https://doi.org/10.1140/epje/e2005-00009-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2005-00009-x

Keywords

Navigation