Skip to main content
Log in

Static and dynamic electro-optic properties of a SmC* phase in surface stabilized geometry and dispersed in the polymer matrix

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Comparative electro-optical measurements have been made on a ferroelectric liquid crystal (FLC) in surface stabilized geometry and confined to an ellipsoidal cavity within a polymer matrix. The static and dynamic electro-optical characteristics were measured for both systems and show qualitatively similar behaviours. A fast switching and important bistability were observed and characterized as a function of the applied electric field strength. The switching time between the two stable states of the surface stabilized cell was found to be longer than that found for the composite films. We argue that the faster switching dynamic of the FLC in cavities is due to the enhance of the rotational mobility of the molecules, probably (and partly) because of the “soft” anchoring character of the molecules at the cavity walls. Using a collective switching model in the high field regime, which assume a linear coupling between the spontaneous polarization and the local cavity electric field, we give an estimate of the rotational viscosity of the FLC molecules in the droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Doane, Liquid Crystals-Application and uses, edited by B. Bahadur (World Scientific Publishing, Singapore, 1990) p. 361

  2. J.W. Doane, N. Vaz, B.G. Wu, S. Žumer, Appl. Phys. Lett. 48, 269 (1986)

    Article  Google Scholar 

  3. J.W. Doane, A. Golemme, J.L. West, J.B. Whitehead, B.G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988)

    Google Scholar 

  4. H.S. Kitzerow, Polymer-dispersed and Polymer-stabilized Chiral Liquid Crystals, in Liquid Crystals in Complex Geometries, edited by G.P. Crawford, S. Žumer (Taylor and Francis, London, 1996) p. 187

  5. J.H. Erdmann, S. Žumer, J.W. Doane, Phys. Rev. Lett. 64, 1907 (1990)

    Article  Google Scholar 

  6. U. Maschke, F. Benmouna, F. Roussel, A. Daoudi, F. Gyselinck, J.M. Buisine, X. Coqueret, M. Benmouna, Macromolecules 32, 8866 (1999)

    Article  Google Scholar 

  7. F. Benmouna, A. Daoudi, F. Roussel, L. Leclercq, J.M. Buisine, X. Coqueret, M. Benmouna, B. Ewen, U. Maschke, Macromolecules 33, 960 (2000)

    Article  Google Scholar 

  8. Ma. Vilfan, B. Zalar, A.K. Fontecchio, Mo. Vilfan, M.J. Escuti, G.P. Crawford, S. Žumer, Phy. Rev. E 66, 021710 (2002)

    Article  Google Scholar 

  9. H.S. Kitzerow, H. Molsen, G. Heppke, Appl. Phys. Lett. 60, 3093 (1992)

    Article  Google Scholar 

  10. H.S. Kitzerow, H. Molsen, G. Heppke, Poly. Adv. Techn. 3, 231 (1992)

    Article  Google Scholar 

  11. H. Molsen, H.S. Kitzerow, J. Appl. Phys. 75, 710 (1994)

    Article  Google Scholar 

  12. L. Komitov, S.T. Lagerwall, G. Chidichimo, Liquid Crystal Materials, Devices and Applications III, edited by R. Shashidhar (SPIE Proc., 1994), Vol. 2175, p. 160

  13. G. Heppke, H.S. Kitzerow, H. Molsen, Mol. Cryst. Liq. Cryst. 237, 471 (1993)

    Google Scholar 

  14. H. Molsen, H.S. Kitzerow, G. Heppke, Jpn J. Appl. Phys. 31, L1083 (1992)

  15. N. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)

    Article  Google Scholar 

  16. A.D.L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe, A. Fukuda, Jpn J. Appl. Phys. 28, L1265 (1989)

  17. S. Garoff, R.B. Meyer, Phys. Rev. Lett. A 19, 338 (1979)

    Article  Google Scholar 

  18. L.A. Beresnev, V.G. Chigrinov, D.I. Dergachev, E.P. Pozhidaev, J. Fünfschilling, M. Schadt, Liq. Cryst. 5, 1171 (1989)

    Google Scholar 

  19. J. Fünfschilling, M. Schadt, J. Appl. Phys. 66, 3877 (1989)

    Article  Google Scholar 

  20. P.G. De Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)

  21. I. Muševic, R. Blinc, B. Žekš, The Physics of Ferroelectric and Anti-Ferroelectric Liquid Crystals (World Scientific, 2000)

  22. J. Pirš, R. Blinc, B. Marin, S. Pirš, Mol. Cryst. Liq. Cryst. 264, 155 (1995)

    Google Scholar 

  23. R.A.M. Hikmet, H.M.J. Boots, M. Michielsen, Liq. Cryst. 19, 65 (1995)

    Google Scholar 

  24. I. Dierking, M.A. Osipov, S.T. Lagerwall, Eur. Phys. J. E 2, 303 (2000)

    Article  Google Scholar 

  25. V. Vorflusev, S. Kumar, Science 283, 1903 (1999)

    Article  Google Scholar 

  26. V.Ya. Zyryanov, S.L. Smorgon, V.F. Shabanov, Ferroelectrics 143, 271 (1993)

    Google Scholar 

  27. K. Lee, S.-W. Suh, S.-D. Lee, Appl. Phys. Lett. 64, 718 (1994)

    Article  Google Scholar 

  28. J.-H. Kim, K. Lee, S.-D. Lee, Mol. Cryst. Liq. Cryst. 302, 79 (1997)

    Google Scholar 

  29. C.M. Leader, W. Zheng, J. Tipping, H.J. Coles, Liq. Cryst. 19, 415 (1995)

    Google Scholar 

  30. H. Xu, J.K. Vij, A. Rappaport, N.A. Clark, Phys. Rev. Lett. 79, 249 (1997)

    Article  Google Scholar 

  31. L. Naji, F. Kremer, R. Stannarius, Liq. Cryst. 25, 363 (1998)

    Article  Google Scholar 

  32. S.A. Rozanski, S. Stannarius, F. Kremer, S. Diele, Liq. Cryst. 28, 1071 (2001)

    Article  Google Scholar 

  33. F.M. Aliev, Liquid Crystals and Polymers in Pores, in Liquid Crystals in Complex geometries, edited by G.P. Crawford, S. Žumer (Taylor and Francis, London, 1996), p. 345

  34. J.A. Stratton, Electromagnetic Theory (Mc Graw Hill, New York, 1941)

  35. B.-G. Wu, J.H. Erdmann, J.W. Doane, Liq. Cryst. 5, 1453 (1989)

    MATH  Google Scholar 

  36. S.L. Smorgon, A.W. Barannik, V.Ya. Zyryanov, E.P. Pozhidaev, A.L. Andreev, I.N. Kompanets, D. Ganzke, W. Haase, Mol. Cryst. Liq. Cryst. 368, 207 (2001)

    Google Scholar 

  37. K.H. Yang, T.C. Chieu, S. Osofsky, Appl. Phys. Lett. 55, 125 (1989)

    Article  Google Scholar 

  38. N. Vaz, G.W. Smith, G.P. Montgomery, Mol. Cryst. Liq. Cryst. 146, 1 (1987)

    Google Scholar 

  39. S.T. Lagerwall, B. Otterholm, K. Skarp, Mol. Cryst. Liq. Cryst. 152, 503 (1987)

    Google Scholar 

  40. K. Miyatso, S. Abe, H. Takezoe, A Fukuda, E. Kuse, Jpn J. Appl. Phys. 22, L661 (1983)

  41. S.J. Watson, L.S. Matkin, L.J. Baylis, N. Bowring, H.F. Gleeson, M. Hird, J. Goodby, Phys. Rev. E 65, 31705 (2002)

    Article  Google Scholar 

  42. V. Vorflusev, S. Kumar, Ferroelectrics 213, 117 (1998)

    Google Scholar 

  43. K. Skarp, Ferroelectrics 84, 119 (1988)

    Google Scholar 

  44. K. Skarp, K. Flatishler, S.T. Lagerwall, Ferroelectrics 84, 183 (1988)

    Google Scholar 

  45. L.K.H. Van Beek, In Progress in Dielectrics (J.B. Birks: Heywood, London, 1967)

  46. V. Vorflusev, M. Kosygina, V. Chigrinov, Ferroelectrics 178, 75 (1996)

    Google Scholar 

  47. T. Bellini, N.A. Clark, D.W. Schaefer, Phys. Rev. Lett. 74, 2740 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Daoudi.

Additional information

Received: 5 October 2003, Published online: 5 February 2004

PACS:

61.30.Pq Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems - 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions - 77.80.Fm Switching phenomena

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daoudi, A., Dubois, F., Legrand, C. et al. Static and dynamic electro-optic properties of a SmC* phase in surface stabilized geometry and dispersed in the polymer matrix. Eur. Phys. J. E 12, 573–580 (2003). https://doi.org/10.1140/epje/e2004-00029-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2004-00029-0

Keywords

Navigation