Skip to main content
Log in

Improved selection of dark states in the presence of drive-induced dissipation

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We revisit the coherent population trapping (CPT) of a three-state system in the presence of environmental fluctuations and strong electromagnetic driving fields. To this end, we use a fluctuation-regulated quantum master equation that considers the drive-induced dissipation (DID) in the system. The DID originates from the combined effect of a driving field and environmental fluctuations. We report that increasing DID shows a narrowing of CPT linewidth and, hence, improved selection of the dark states. As such, the DID enhances the sensitivity of CPT at a driving strength much larger than the system’s relaxation rates. We also discuss the practical implementation of the scheme along with possible applications.

Graphic abstract

The figure shows the narrowing of CPT responance (narrow dark region) as the environmental fluctuation correlation \(\tau _c\) and hence, the drive-induced dissipation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

This paper has no associated data or the data will not be deposited. All the relevant data are within the paper.

References

  1. M.O. Scully, S.-Y. Zhu, A. Gavrielides, Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62(24), 2813–2816 (1989). https://doi.org/10.1103/PhysRevLett.62.2813

    Article  ADS  Google Scholar 

  2. W. Tan, W. Lu, R.G. Harrison, Lasing without inversion in a v system due to trapping of modified atomic states. Phys. Rev. A 46(7), 3613–3616 (1992). https://doi.org/10.1103/PhysRevA.46.R3613

    Article  ADS  Google Scholar 

  3. M.O. Scully, M. Fleischhauer, High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 69(9), 1360–1363 (1992). https://doi.org/10.1103/PhysRevLett.69.1360

    Article  ADS  Google Scholar 

  4. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, L. Moi, All optical sensor for automated magnetometry based on coherent population trapping. J. Opt. Soc. Am. B JOSAB (2007). https://doi.org/10.1364/JOSAB.24.001482

    Article  Google Scholar 

  5. A.-L. Yang, G.-Q. Yang, Y.-F. Xu, Q. Lin, High contrast atomic magnetometer based on coherent population trapping. Chin. Phys. B 23(2), 027601 (2014). https://doi.org/10.1088/1674-1056/23/2/027601

    Article  ADS  Google Scholar 

  6. S.A. Zibrov, I. Novikova, D.F. Phillips, R.L. Walsworth, A.S. Zibrov, V.L. Velichansky, A.V. Taichenachev, V.I. Yudin, Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks. Phys. Rev. A 81(1), 013833 (2010). https://doi.org/10.1103/PhysRevA.81.013833

    Article  ADS  Google Scholar 

  7. Y. Hu, Y.Y. Feng, C. Xu, H.B. Xue, L. Sun, Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator. Appl. Opt. 53(10), 2158–2162 (2014). https://doi.org/10.1364/AO.53.002158

    Article  ADS  Google Scholar 

  8. S.-H. Wu, E. Turner, H. Wang, Continuous real-time sensing with a nitrogen-vacancy center via coherent population trapping. Phys. Rev. A 103(4), 042607 (2021). https://doi.org/10.1103/PhysRevA.103.042607

    Article  ADS  Google Scholar 

  9. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour. Il Nuovo Cimento B (1971–1996) 36(1), 5–20 (1976). https://doi.org/10.1007/BF02749417

  10. H.R. Gray, R.M. Whitley, C.R. Stroud, Coherent trapping of atomic populations. Opt. Lett. 3(6), 218 (1978). https://doi.org/10.1364/OL.3.000218

    Article  ADS  Google Scholar 

  11. E. Arimondo, G. Orriols, Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Lettere al Nuovo Cimento (1971-1985) 17(10), 333–338 (1976). https://doi.org/10.1007/BF02746514

  12. G.S. Agarwal, Coherent population trapping states of a system interacting with quantized fields and the production of the photon statistics matched fields. Phys. Rev. Lett. 71(9), 1351–1354 (1993). https://doi.org/10.1103/PhysRevLett.71.1351

    Article  ADS  Google Scholar 

  13. A.J. Ramsay, T.M. Godden, S.J. Boyle, E.M. Gauger, A. Nazir, B.W. Lovett, A.M. Fox, M.S. Skolnick, Phonon-induced Rabi-frequency renormalization of optically driven single \(\rm InGaAs/\rm GaAs\rm \) Quantum Dots. Phys. Rev. Lett. 105, 177402 (2010). https://doi.org/10.1103/PhysRevLett.105.177402

    Article  ADS  Google Scholar 

  14. A. Chakrabarti, R. Bhattacharyya, Non-Bloch decay of Rabi oscillations in liquid state NMR. EPL (Europhys. Lett.) 121, 57002 (2018). https://doi.org/10.1209/0295-5075/121/57002

  15. L. D’Alessio, M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4(4), 041048 (2014). https://doi.org/10.1103/PhysRevX.4.041048

    Article  Google Scholar 

  16. D.A. Abanin, W. De Roeck, F. Huveneers, Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115(25), 256803 (2015). https://doi.org/10.1103/PhysRevLett.115.256803

    Article  ADS  Google Scholar 

  17. A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui, S.L. Sondhi, V. Khemani, C. Gross, I. Bloch, Floquet prethermalization in a bose-hubbard system. Phys. Rev. X 10, 021044 (2020). https://doi.org/10.1103/PhysRevX.10.021044

    Article  Google Scholar 

  18. E. Arimondo, V Coherent population trapping in laser spectroscopy. Prog. Opt. 35, 257–354 (1996). https://doi.org/10.1016/S0079-6638(08)70531-6

    Article  ADS  Google Scholar 

  19. I.V. Jyotsna, G.S. Agarwal, Coherent population trapping at low light levels. Phys. Rev. A 52(4), 3147–3152 (1995). https://doi.org/10.1103/PhysRevA.52.3147

    Article  ADS  Google Scholar 

  20. I.V. Jyotsna, G.S. Agarwal, Dynamics of coherent population trapping states in dense systems. Phys. Rev. A 53(3), 1690–1696 (1996). https://doi.org/10.1103/PhysRevA.53.1690

    Article  ADS  Google Scholar 

  21. A. Chakrabarti, R. Bhattacharyya, Quantum master equation with dissipators regularized by thermal fluctuations. Phys. Rev. A 97(6), 063837 (2018). https://doi.org/10.1103/PhysRevA.97.063837

    Article  ADS  Google Scholar 

  22. N. Chanda, R. Bhattacharyya, Optimal clock speed of qubit gate operations on open quantum systems. Phys. Rev. A 101(4), 042326 (2020). https://doi.org/10.1103/PhysRevA.101.042326

    Article  ADS  Google Scholar 

  23. N. Chanda, R. Bhattacharyya, Emergence of the Born rule in strongly driven dissipative systems. Phys. Rev. A 104(2), 022436 (2021). https://doi.org/10.1103/PhysRevA.104.022436

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Chatterjee, R. Bhattacharyya, Nonlinearity and temperature dependence of drive-induced shifts in a thermal environment. Phys. Rev. A 102(4), 043111 (2020). https://doi.org/10.1103/PhysRevA.102.043111

    Article  ADS  Google Scholar 

  25. S. Saha, R. Bhattacharyya, Time-periodic interaction between a spin-pair: a quantum master equation approach. J. Magn. Resonan. Open 10–11, 100046 (2022). https://doi.org/10.1016/j.jmro.2022.100046

    Article  Google Scholar 

  26. S. Saha, R. Bhattacharyya, Effects of dipolar coupling on an entanglement storage device. J. Phys. B: At. Mol. Opt. Phys. 55(23), 235501 (2022). https://doi.org/10.1088/1361-6455/ac9a18

    Article  ADS  Google Scholar 

  27. S. Saha, R. Bhattacharyya, Cascaded dynamics of a periodically driven dissipative dipolar system. Phys. Rev. A 107, 022206 (2023). https://doi.org/10.1103/PhysRevA.107.022206

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Chakrabarti, R. Bhattacharyya, Emergence of prethermal states in a driven dissipative system through cross-correlated dissipation. Europhys. Lett. 142(5), 55001 (2023). https://doi.org/10.1209/0295-5075/acd4e5

    Article  ADS  Google Scholar 

  29. P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, T. Basché, Pump-probe experiments with a single molecule: ac-stark effect and nonlinear optical response. Phys. Rev. Lett. 75(8), 1514–1517 (1995). https://doi.org/10.1103/PhysRevLett.75.1514

    Article  ADS  Google Scholar 

  30. J. Vanier, Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81(4), 421–442 (2005). https://doi.org/10.1007/s00340-005-1905-3

    Article  ADS  Google Scholar 

  31. M.D. Lukin, S.F. Yelin, M. Fleischhauer, M.O. Scully, Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60(4), 3225–3228 (1999). https://doi.org/10.1103/PhysRevA.60.3225

    Article  ADS  Google Scholar 

  32. F. Renzoni, A. Lindner, E. Arimondo, Coherent population trapping in open systems: a coupled/noncoupled-state analysis. Phys. Rev. A 60, 450–455 (1999). https://doi.org/10.1103/PhysRevA.60.450

    Article  ADS  Google Scholar 

  33. T. Zinkevich, V. Chevelkov, B. Reif, K. Saalwächter, A. Krushelnitsky, Internal protein dynamics on ps to \(\mu \)s timescales as studied by multi-frequency 15N solid-state NMR relaxation. J. Biomol. NMR 57, 219–235 (2013). https://doi.org/10.1007/s10858-013-9782-2

    Article  Google Scholar 

  34. D. Huster, L. Xiao, M. Hong, Solid-state NMR investigation of the dynamics of the soluble and membrane-bound colicin ia channel-forming domain. Biochemistry 40(25), 7662–7674 (2001). https://doi.org/10.1021/bi0027231

    Article  Google Scholar 

  35. I. Hung, P. Gor’kov, Z. Gan, Using the heteronuclear Bloch-Siegert shift of protons for B1 calibration of insensitive nuclei not present in the sample. J. Magn. Reson. 310, 106636 (2020). https://doi.org/10.1016/j.jmr.2019.106636

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Saptarshi Saha for insightful discussions and helpful suggestions. A. C. acknowledges the University Grants Commission (UGC) of the Government of India for providing financial assistance through senior research fellowship (SRF) with reference ID- 522160.

Author information

Authors and Affiliations

Authors

Contributions

AC carried out the analytical and computational work, and RB supervised the work and helped with the manuscript.

Corresponding author

Correspondence to Rangeet Bhattacharyya.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Bhattacharyya, R. Improved selection of dark states in the presence of drive-induced dissipation. Eur. Phys. J. D 78, 44 (2024). https://doi.org/10.1140/epjd/s10053-024-00839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00839-1

Navigation