Skip to main content
Log in

Internal protein dynamics on ps to μs timescales as studied by multi-frequency 15N solid-state NMR relaxation

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon 15N T 1 and on- and off-resonance T relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from 15N–1H dipole–dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a “two components” model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1–10 μs can be determined reliably in spite of rather low apparent amplitudes (below 1 %), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (τ < 10−10 s) and intermediate (10−9 s < τ < 10−7 s) motions are separated by a gap of one order of magnitude in time with almost no motions. For slower motions (τ > 10−6 s) we observe a sharp ~1 order of magnitude decrease of the apparent motional amplitudes. Such a distribution obviously reflects different nature of backbone motions on different time scales, where the slow end may be attributed to weakly populated “excited states.” Surprisingly, our data reveal no clearly evident correlations between secondary structure of the protein and motional parameters. We also could not notice any unambiguous correlations between motions in different time scales along the protein backbone emphasizing the importance of the inter-residue interactions and the cooperative nature of protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah A, Deris S, Anwar S, Arjunan SNV (2013) An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PLoS ONE 8:e56310

    Article  ADS  Google Scholar 

  • Agarwal V, Xue Y, Reif B, Skrynnikov NR (2008) Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed. J Am Chem Soc 130:16611–16621

    Article  Google Scholar 

  • Akaike H (1974) Stochastic theory of minimal realization. IEEE Trans Automat Contr 19:667–674

    Article  MathSciNet  MATH  Google Scholar 

  • Akasaka K (1983) Spin–spin and spin-lattice contributions to the rotating frame relaxation of 13C in l-alanine. J Chem Phys 78:3567–3572

    Article  ADS  Google Scholar 

  • Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47

    Article  Google Scholar 

  • Ban D, Funk M, Gulich R, Egger D, Sabo TM, Walter KFA, Fenwick RB, Giller K, Pichierri F, de Groot BL, Lange OF, Grubmüller H, Salvatella X, Wolf M, Loidl A, Kree R, Becker S, Lakomek N-A, Lee D, Lunkenheimer P, Griesinger C (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem 123:11639–11642

    Article  Google Scholar 

  • Beckmann P (1988) Spectral densities and nuclear spin relaxation in solids. Phys Rep 171:85–128

    Article  ADS  Google Scholar 

  • Bertini I, Emsley L, Felli IC, Laage S, Lesage A, Lewandowski JR, Marchetti A, Pieratelli R, Pintacuda G (2011) High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chem Sci 2:345–348

    Article  Google Scholar 

  • Böckmann A (2008) 3D protein structures by solid-state NMR spectroscopy: ready for high resolution. Angew Chem Int Ed 47:6110–6113

    Article  Google Scholar 

  • Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW, Baker D, Kay LE (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111–114

    Article  ADS  Google Scholar 

  • Castellani F, Van Rossum B, Diehl A (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Chang S-L, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation. J Magn Reson 174:43–53

    Article  ADS  Google Scholar 

  • Chekmenev EY, Zhang Q, Waddell KW, Mashuta MS, Wittebrot RJ (2004) 15N Chemical shielding in glycyl tripeptides: measurement by solid-state NMR and correlation with X-ray structure. J Am Chem Soc 126:379–384

    Article  Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Article  Google Scholar 

  • Chevelkov V, Zhuravleva AV, Xue Y, Reif B, Skrynnikov NR (2007) Combined analysis of 15N relaxation data from solid- and solution-state NMR Spectroscopy. J Am Chem Soc 129:12594–12595

    Article  Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2008) Measurement of 15N-T1 relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 128:052316

    Article  ADS  Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009a) Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. J Am Chem Soc 131:14018–14022

    Article  Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009b) Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45:197–206

    Article  Google Scholar 

  • Chevelkov V, Xue Y, Linser R, Skrynnikov NR, Reif B (2010) Comparison of solid-state dipolar couplings and solution relaxation data. J Am Chem Soc 132:5015–5017

    Article  Google Scholar 

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  • Cole HBR, Torchia DA (1991) An NMR study of the backbone dynamics of staphylococcal nuclease in the crystalline state. Chem Phys 158:271–281

    Article  ADS  Google Scholar 

  • Daragan V, Mayo K (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog Nucl Magn Reson Spectrosc 31:63–105

    Article  Google Scholar 

  • Dayie KT, Wagner G, Lefèvre JF (1996) Theory and practice of nuclear spin relaxation in proteins. Annu Rev Phys Chem 47:243–282

    Article  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Fedotov V, Schneider H (1989) Structure and dynamics of bulk polymers by NMR methods. Springer, Berlin

    Book  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Gaspari Z, Perczel A (2010) Protein dynamics as reported by NMR. Annu Rep NMR Spectrosc 71:35–75

    Article  Google Scholar 

  • Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201

    Article  Google Scholar 

  • Hackel C, Zinkevich T, Belton P, Achilles A, Reichert D, Krushelnitsky A (2012) The trehalose coating effect on the internal protein dynamics. Phys Chem Chem Phys 14:2727–2734

    Article  Google Scholar 

  • Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79:3090–3093

    Article  ADS  Google Scholar 

  • Hall JB, Fushman D (2006) Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters. J Am Chem Soc 128:7855–7870

    Article  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  ADS  Google Scholar 

  • Herzfeld J, Roberts JE, Griffin RG (1987) Sideband intensities in two-dimensional NMR spectra of rotating solids. J Chem Phys 86:597

    Article  ADS  Google Scholar 

  • Johnson E, Palmer A, Rance M (2007) Temperature dependence of the NMR generalized order parameter. Protein Struct Funct Bioinf 66:796–803

    Article  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  Google Scholar 

  • Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc 38:197–266

    Article  Google Scholar 

  • Korzhnev D, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson SM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  ADS  Google Scholar 

  • Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  • Kroenke C, Loria J, Lee L (1998) Longitudinal and transverse 1H-15N dipolar/15N chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120:7905–7915

    Article  Google Scholar 

  • Krushelnitsky A, Kurbanov R, Reichert D, Hempel G, Schneider H, Fedotov V (2002) Expanding the frequency range of the solid-state T1rho experiment for heteronuclear dipolar relaxation. Solid State Nucl Magn Reson 22:423–438

    Article  Google Scholar 

  • Krushelnitsky A, DeAzevedo E, Linser R, Reif B, Saalwächter K, Reichert D (2009) Direct observation of millisecond to second motions in proteins by dipolar CODEX NMR spectroscopy. J Am Chem Soc 131:12097–12099

    Article  Google Scholar 

  • Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B (2010) Microsecond time scale mobility in a solid protein as studied by the 15N R(1rho) site-specific NMR relaxation rates. J Am Chem Soc 132:11850–11853

    Article  Google Scholar 

  • Kurbanov R, Zinkevich T, Krushelnitsky A (2011) The nuclear magnetic resonance relaxation data analysis in solids: general R1/R1(ρ) equations and the model-free approach. J Chem Phys 135:184104

    Article  ADS  Google Scholar 

  • Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Umsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254

    Article  Google Scholar 

  • Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2011) Site-specific measurement of slow motions in proteins. J Am Chem Soc 133:16762–16765

    Article  Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Mack JW, Usha MG, Long J, Griffin RG, Wittebrot RJ (2000) Backbone motions in crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis. Biopolymers 53:9–18

    Article  Google Scholar 

  • Marchetti A, Jehle S, Felletti M, Knight MJ, Wang Y, Xu Z-Q, Par AY, Otting G, Lesage A, Emsley L, Dixon NE, Pintacuda G (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 51:10756–10759

    Article  Google Scholar 

  • Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129:4724–4730

    Article  Google Scholar 

  • Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T (2005) Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. J Phys Chem B 109:18135–18145

    Article  Google Scholar 

  • McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, London

    Google Scholar 

  • Mollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra SM, Emsley L, Blackledge M (2012) Atomic resolution structural dynamics in crystalline proteins from molecular simulation and NMR. J Phys Chem Lett 3:3657–3662

    Article  Google Scholar 

  • Morin S (2011) A practical guide to protein dynamics from 15N spin relaxation in solution. Prog Nucl Magn Reson Spectrosc 59:245–262

    Article  Google Scholar 

  • Palmer A (2001) NMR probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct 30:129–155

    Article  Google Scholar 

  • Reichert D, Zinkevich T, Saalwächter K, Krushelnitsky A (2012) The relation of the X-ray B-factor to protein dynamics: insights from recent dynamic solid-state NMR data. J Biomol Struct Dyn 30:617–627

    Article  Google Scholar 

  • Salmon L, Bouvignies G, Markwick P, Lakomek N, Showalter S, Li D-W, Walter K, Griesinger C, Brüschweiler R, Blackledge M (2009) Protein conformational flexibility from structure-free analysis of NMR dipolar couplings: quantitative and absolute determination of backbone motion in ubiquitin. Angew Chem Int Ed 48:4154–4157

    Article  Google Scholar 

  • Schanda P (2013) Personal communication, to be published

  • Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967

    Article  Google Scholar 

  • Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M (2011) Solid-state NMR measurements of asymmetric dipolar couplings provide insight into protein side-chain motion. Angew Chem Int Ed 50:11005–11009

    Article  Google Scholar 

  • Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736

    Article  Google Scholar 

  • VanderHart DL, Garroway AN (1979) 13C NMR rotating frame relaxation in a solid with strongly coupled protons: polyethylene. J Chem Phys 71:2773–2787

    Article  ADS  Google Scholar 

  • Wylie BJ, Franks WT, Rienstra CM (2006) Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. J Phys Chem B 110:10926–10936

    Article  Google Scholar 

  • Wylie BJ, Sperling LJ, Frericks HL, Shah GJ, Franks WT, Riensta CM (2007) Chemical-shift anisotropy measurements of amide and carbonyl resonances in a microcrystalline protein with slow magic-angle spinning NMR spectroscopy. J Am Chem Soc 129:5318–5319

    Article  Google Scholar 

  • Yang J, Tasayco ML, Polenova T (2009) Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from different time scales. J Am Chem Soc 131:13690–13702

    Article  Google Scholar 

  • Yao L, Vögeli B, Ying J, Bax A (2008) NMR determination of amide N-H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130:16518–16520

    Article  Google Scholar 

  • Zech SG, Wand JA, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, SFB-TRR 102 project A8) for funding this work. Fruitful discussions with Dr. Paul Schanda and Prof. Christian Griesinger are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Krushelnitsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinkevich, T., Chevelkov, V., Reif, B. et al. Internal protein dynamics on ps to μs timescales as studied by multi-frequency 15N solid-state NMR relaxation. J Biomol NMR 57, 219–235 (2013). https://doi.org/10.1007/s10858-013-9782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9782-2

Keywords

Navigation