Skip to main content
Log in

Investigation of nonlinear optical effects with fibre Bragg gratings and signal-to-noise ratio in the evolution of highly sensitive system

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

To help the physicians, intra-cavity absorption spectroscopy is being used to design a highly sensitive biomedical sensor for air coming from the lungs. Using the principles of lasing, two different wavelengths (modes) are used to set up this operation. An analysis of our previous results indicates that an in-depth investigation of the fibre Bragg gratings is mandatory which has been done in this work. As the sensor’s operation relies heavily on these FBGs, we resort to calculate and investigate their Bragg wavelengths in accordance with the respective intrinsic properties and data-sheets. Each FBG has been characterized rigorously under numerous temperature conditions for long periods of time and leads to the design limitations of the Bragg wavelength. Afterwards, an intensive measurement and evaluation of signal-to-noise ratio of both modes with respect to the input parameters of the setup is performed. This excessive investigation leads to an increased value of signal-to-noise ratio of 54.5 dB in comparison to previous work and profound implementation attributes that have been discussed in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data required to prepare the manuscript is available within manuscript.]

Notes

  1. numerous approaches for specific applications are being pursued, like [55, 56].

  2. the investigation was repeated after swapping the FBGs, and the results are omitted here to avoid any confusion.

Abbreviations

OSA :

Optical spectrum analyser

LDC:

Laser diode controller

ESA:

Electrical spectrum analyser

SOA:

Semiconductor optical amplifier

FBG:

Fibre Bragg grating

\({\hbox {FBG}}_{\hbox {i}}/{\hbox {FBG1}}\) :

Fibre Bragg grating corresponding to the inner cavity

\({\hbox {FBG}}_{\hbox {o}}/{\hbox {FBG2}}\) :

Fibre Bragg grating corresponding to the outer cavity

\({\hbox {M}}_{\hbox {i}}/{\hbox {M1}}\) :

Mode corresponding to the inner cavity

\({\hbox {M}}_{{\hbox {o}}}/{\hbox {M2}}\) :

Mode corresponding to the outer cavity

\({\hbox {VC}}_{\hbox {i}}/{\hbox {VC1}}\) :

Variable coupler corresponding to the inner cavity

\(\hbox {VC}_{{\hbox {o}}}/{\hbox {VC2}}\) :

Variable coupler corresponding to the outer cavity

SNR:

Signal-to-noise ratio

VOC:

Volatile organic compound

\(P_\textrm{Signal}\) :

Signal power

\(P_\textrm{Noise}\) :

Noise power

\(\lambda \) :

Wavelength of light

\(\lambda _{\textrm{b}}\) :

Bragg wavelength

References

  1. M. Kuroda, Low-power and Secure Wearable ECG over Body Area Network: Towards Invisible and Dependable Health Watch-over Services (Press Release), May 11, 2009

  2. A. Lymberis, D.E. de Rossi, Wearable Ehealth Systems for Personalised Health Management: State of the Art and Future Challenges, vol. 108 (IOS Press, Amsterdam, 2004)

    Google Scholar 

  3. C. Otto, A. Milenkovic, C. Sanders, E. Jovanov, System architecture of a wireless body area sensor network for ubiquitous health monitoring. J. Mobile Multimed. 1(4), 307–326. Retrieved from https://journals.riverpublishers.com/index.php/JMM/article/view/5053

  4. C. Wang, P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors (Basel) 9(10), 8230–62 (2009). https://doi.org/10.3390/s91008230. (Epub 2009 Oct 19)

    Article  ADS  Google Scholar 

  5. E. Savelyev, Sensitivity of lossy mode resonance-based optical fiber sensors as a function of the coating material refractive index. Eur. Phys. J. D 75, 285 (2021). https://doi.org/10.1140/epjd/s10053-021-00296-0

    Article  ADS  Google Scholar 

  6. S.W. Lewis, Spectroscopic techniques, in Encyclopedia of Forensic Sciences, 3rd edn., ed. by M.M. Houck (Elsevier, Amsterdam, 2023), pp.573–582. https://doi.org/10.1016/B978-0-12-823677-2.00078-7 (ISBN:9780128236789)

    Chapter  Google Scholar 

  7. N. Wan, F. Meng, T. Schroeder et al., High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun. 6, 7762 (2015). https://doi.org/10.1038/ncomms8762

    Article  ADS  Google Scholar 

  8. L. Brancaleon, Chapter Four—Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option, in Advances in Protein Chemistry and Structural Biology, vol. 93, ed. by C.Z. Christov (Academic Press, London, 2013), pp.95–152. https://doi.org/10.1016/B978-0-12-416596-0.00004-X (ISBN:9780124165960)

    Chapter  Google Scholar 

  9. R.F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P.J. Mazzone, T. Mekhail, C. Jennings, J.K. Stoller, J. Pyle, J. Duncan, R.A. Dweik, S.C. Erzurum, Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med. 171(11), 1286–91 (2005). https://doi.org/10.1164/rccm.200409-1184OC. (Epub 2005 Mar 4)

    Article  Google Scholar 

  10. U. Masud, Investigations on highly sensitive optical semiconductor laser based sensorics for medical and environmental applications : “The Nanonose”, Kassel University Press, 19 Jan 2015, ISBN:3862195554

  11. C. Grote, J. Pawliszyn, Anal. Chem. 69(4), 587–596 (1997). https://doi.org/10.1021/ac960749l

    Article  Google Scholar 

  12. E.D. Hinkley, High-resolution infrared spectroscopy with a tunable diode laser. Appl. Phys. Lett. 16(9), 351–354 (1970)

    Article  ADS  Google Scholar 

  13. V.M. Baev, P.E. Toschek, Sensitivity limits of laser intracavity spectroscopy, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 1715 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. by H. Schiff and U. Platt, pp. 381–392, February 1993

  14. Poisoning of platinum surfaces by hexamethyldisiloxane (hmds): application to catalytic methane sensors. Sens. Actuators B: Chem. 40(2-3), 117–124 (1997)

  15. B. Ghosh, S. Mandal, Fiber Bragg grating-based optical filters for high-resolution sensing: a comprehensive analysis. Results Opt. (2023). https://doi.org/10.1016/j.rio.2023.100441

    Article  Google Scholar 

  16. J.B. Terrill, R.R. Montgomery, C.F. Reinhardt, Toxic gases from fires. Science 200(4348), 1343–7 (1978). https://doi.org/10.1126/science.208143

    Article  ADS  Google Scholar 

  17. V.M. Baev, J. Eschner, E. Paeth et al., Intra-cavity spectroscopy with diode lasers. Appl. Phys. B 55, 463–477 (1992). https://doi.org/10.1007/BF00332504

    Article  ADS  Google Scholar 

  18. G. Wedler, Lehrbuch Der Physikalischen Chemie, 4th edn. (Vch Verlagsgesellschaft mbH, Weinheim, 1997)

    Google Scholar 

  19. I. Fleming, D. Williams, Spectroscopic Methods in Organic Chemistry, 7th edn. (Springer Nature Switzerland AG, Cham, 2019). https://doi.org/10.1007/978-3-030-18252-6 (Softcover ISBN:978-3-030-18251-9)

    Book  Google Scholar 

  20. U. Masud, F. Jeribi, A. Zeeshan, A. Tahir, M. Ali, Highly sensitive microsensor based on absorption spectroscopy: design considerations for optical receiver. IEEE Access 8, 100212–100225 (2020). https://doi.org/10.1109/ACCESS.2020.2996973

    Article  Google Scholar 

  21. The Vector Toxic Gas Detector, ESP Safety, https://espsafetyinc.com/products/toxic-gas-detectors/vector/ (visited on October 13, 2023 - 0541 GMT)

  22. T. Guo, Q. Zhao, L. Liu et al., Light intensity-referred and temperature-insensitive fiber Bragg grating dynamic pressure sensor. Front. Optoelectron. China 1, 113–118 (2008). https://doi.org/10.1007/s12200-008-0018-0

    Article  Google Scholar 

  23. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Physics of Earth and Space Environments), 1st edn. (Springer, Berlin, Heidelberg, 2008). (ISBN:978-3-540-75776-4)

    Google Scholar 

  24. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9(4), 545 (1998)

    Article  ADS  Google Scholar 

  25. P. Werle, A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 54(2), 197–236 (1998). https://doi.org/10.1016/S1386-1425(97)00227-8

    Article  ADS  Google Scholar 

  26. E.D. Hinkley, High-resolution infrared spectroscopy with a tunable diode laser. Appl. Phys. Lett. 16(9), 351–354 (1970)

    Article  ADS  Google Scholar 

  27. P.S. Ellis, A.J. Lyddy-Meaney, P.J. Worsfold, I.D. McKelvie, Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters. Anal. Chim. Acta 499(1–2), 81–89 (2003). https://doi.org/10.1016/S0003-2670(03)00682-2

    Article  Google Scholar 

  28. U. Masud, M.I. Baig, Investigation of cavity length and mode spacing effects in dual-mode sensor. IEEE Sens. J. 18(7), 2737–2743 (2018). https://doi.org/10.1109/JSEN.2017.2788359

    Article  ADS  Google Scholar 

  29. F. Aljammal, G. Gaborit, S. Iseni et al., Potentialities and limitations of an electro-optic probe for electric field diagnostics of cold atmospheric pressure plasma jets. Eur. Phys. J. D 77, 199 (2023). https://doi.org/10.1140/epjd/s10053-023-00781-8

    Article  ADS  Google Scholar 

  30. T. Hansch, A. Schawlow, P. Toschek, Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. Quantum Electron. 8(10), 802–804 (1972). https://doi.org/10.1109/JQE.1972.1076854

    Article  ADS  Google Scholar 

  31. U. Masud, M.R. Amirzada, H. Elahi, F. Akram, A. Zeeshan, Y. Khan, M.K. Ehsan, M.A. Qureshi, A. Ali, S. Nawaz et al., Design of two-mode spectroscopic sensor for biomedical applications: analysis and measurement of relative intensity noise through control mechanism. Appl. Sci. 2022, 12 (1856). https://doi.org/10.3390/app12041856

    Article  Google Scholar 

  32. G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, New York, 2009)

    Google Scholar 

  33. P. Martina, R. Holdsworth, High-resolution infrared spectroscopy for in situ industrial process monitoring. Spectrosc. Europe 16, 7–15 (2004)

    Google Scholar 

  34. M. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques, 1st edn. (Wiley, New York, 1994)

    Google Scholar 

  35. Inphenix Semiconductor Optical Amplifier, Inphenix, Inc. 250 North Mines Rd, Livermore, CA 94551 USA, https://www.inphenix.com/en/semiconductor-optical-amplifiers/ (visited on September 1, 2023 - 1520 GMT)

  36. Advanced Optics Solutions GmbH, Overbeckstr 39a D-01139 Dresden, https://www.aos-fiber.com/eng/Company.html (visited on August 12, 2023 - 0223 GMT)

  37. Rohde & Schwarz signal and spectrum analyzer, https://www.rohde-schwarz.com/us/products/test-and-measurement/signal-and-spectrum-analyzers_63665.html (visited on August 12, 2023 - 0224 GMT)

  38. Tektronix electrical spectrum analyzer, https://www.tek.com/en/products/spectrum-analyzers (visited on August 12, 2023 - 0225 GMT)

  39. Lecroy oscilloscope, https://www.teledynelecroy.com/wr9000/ (visited on August 12, 2023 - 0227 GMT)

  40. E. Hecht, Optik. Oldenbourg Wissensch.Vlg, January 2005

  41. Optical Time Domain Reflectometer (OTDR), https://www.thefoa.org/tech/ref/testing/OTDR/OTDR.html (visited on September 22 - 0534 GMT)

  42. L. Hu, C. Yuan, Analysis of splice loss of single-mode optical fiber in the high altitude environment. Coatings 11, 876 (2021). https://doi.org/10.3390/coatings11080876

    Article  Google Scholar 

  43. LDC-37X6 Combination Laser Driver and Temperature Controller, https://www.newport.com/f/laser-diode-controller-ldc-3706

  44. T. Petelski, M. Fattori, G. Lamporesi et al., Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking. Eur. Phys. J. D 22, 279–283 (2003). https://doi.org/10.1140/epjd/e2002-00238-4

    Article  ADS  Google Scholar 

  45. L. Yu-Lung, C. Han-Sheng, Measurement of thermal expansion coefficients using an in-fibre Bragg-grating sensor. Meas. Sci. Technol. 9(9), 1543–1547 (1998)

    Article  ADS  Google Scholar 

  46. H. Krause, Entwicklung eines Gassensors auf Basis der Modenkonkurrenz bei Halbleiterlasern. PhD thesis, University of Kassel, 2010

  47. P. Werle, F. Slemr, Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells. Appl. Opt. 30, 430–434 (1991)

    Article  ADS  Google Scholar 

  48. M. Nikodem, D. Weidmann, C. Smith, G. Wysocki, Signal-to-noise ratio in chirped laser dispersion spectroscopy. Opt. Express 20, 644–653 (2012)

    Article  ADS  Google Scholar 

  49. D. Shemwell et al., Optical cavities for visible free-electron laser experiments. IEEE J. Quantum Electron. 23(9), 1522–1526 (1987). https://doi.org/10.1109/JQE.1987.1073562

    Article  ADS  Google Scholar 

  50. U. Masud, M.I. Baig, Multimode competition in lasers in the light of optical feedback, in 2012 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2012, pp. 243–247, https://doi.org/10.1109/FIT.2012.50

  51. S. Valentin, J. Shrestha, private communication

  52. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978). https://doi.org/10.1063/1.89881

    Article  ADS  Google Scholar 

  53. J. Canning, Fibre gratings and devices for sensors and lasers. Laser Photon. Rev. 2, 275–289 (2008). https://doi.org/10.1002/lpor.200810010

    Article  ADS  Google Scholar 

  54. J. Canning, Fibre gratings and devices for sensors and lasers. Laser Photon. Rev. 2, 275–289 (2008). https://doi.org/10.1002/lpor.200810010

    Article  ADS  Google Scholar 

  55. I. Dhingra, G. Kaur, R.S. Kaler, Design and analysis of fiber Bragg grating sensor to monitor strain and temperature for structural health monitoring. Opt. Quant. Electron. 53, 619 (2021). https://doi.org/10.1007/s11082-021-03270-7

    Article  Google Scholar 

  56. H.L. Xu, Z.K. Jiang, S. Svanberg, Lifetime measurements in Tm I, Tm II, and Tm III by time-resolved laser spectroscopy. Eur. Phys. J. D 23, 323–326 (2003). https://doi.org/10.1140/epjd/e2003-00055-3

    Article  ADS  Google Scholar 

  57. M. Kihara, Faults and novel countermeasures for optical fiber connections in fiber-to-the-home networks, from the edited volume, in Current Developments in Optical Fiber Technology, ed. by S.W. Harun, H. Arof, ISBN:978-953-51-1148-1. https://doi.org/10.5772/46191 (2013)

  58. C. Papapanos, D. Zavitsanos, A. Raptakis et al., Studies on the readability and on the detection rate in a Mach-Zehnder interferometer-based implementation for high-rate, long-distance QKD protocols. Eur. Phys. J. D 75, 93 (2021). https://doi.org/10.1140/epjd/s10053-021-00078-8

    Article  ADS  Google Scholar 

  59. S. Mondal, S. Basu, Evolution of the Berry phase and topological properties of a band deformed Chern insulator. Eur. Phys. J. B 94, 207 (2021). https://doi.org/10.1140/epjb/s10051-021-00190-z

    Article  ADS  Google Scholar 

  60. Z. Ma, S. Ramachandran, Propagation stability in optical fibers: role of path memory and angular momentum. Nanophotonics 10(1), 209–224 (2021). https://doi.org/10.1515/nanoph-2020-0404

    Article  Google Scholar 

  61. N. Dung Chinh, van der Waals interaction of an atom near a fiber tip. Eur. Phys. J. D 72, 164 (2018). https://doi.org/10.1140/epjd/e2018-90113-0

    Article  ADS  Google Scholar 

  62. C.E. Campanella, A. Cuccovillo, C. Campanella, A. Yurt, V.M.N. Passaro, Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18, 3115 (2018). https://doi.org/10.3390/s18093115

    Article  ADS  Google Scholar 

  63. W. Demtroder. Experimentalphysik 3: Atome, Molekule und Festkorper (Springer-Lehrbuch) (German Edition). Springer, 3., uberarb. aufl. edition, April 2005

  64. J. Han, S. Baik, J. Jeong, K. Im, H. Moon, H. Noh, D. Choi, Output characteristics of a simple fp-ld/fbg module. Opt. Laser Technol. 39(2), 313–316 (2007)

    Article  ADS  Google Scholar 

  65. M.J. Usher, D.A. Keating, Sensors and Transducers: Characteristics (New Electronics Series. Palgrave, London, Applications, Instrumentation, Interfacing, 1996). https://doi.org/10.1007/978-1-349-13345-1

  66. K. Kalantar-zadeh, B. Fry, Nanotechnology-Enabled Sensors (Springer, Boston, 2008). https://doi.org/10.1007/978-0-387-68023-1

    Book  Google Scholar 

  67. D. Sundararajan, A Practical Approach to Signals and Systems (Wiley, New York, 2009). (ISBN:978-0-470-82354-5)

    Google Scholar 

  68. Notes on the RSGB Observations of the HF Ambient Noise Floor (PDF). Radio Society of Great Britain. Retrieved 2014-02-03, http://rsgb.org/main/files/2012/12/EMC_RSGB_HF_Ambient_Noise_Floor_2003.pdf (visited on November 11, 2023 - 1831 GMT)

  69. J. Wang, X. Chen, S. Zhu et al., Actual sensing sensitivity and SNR measurement of optical tweezers based on coulomb force input. Photonic Sens. 13, 230124 (2023). https://doi.org/10.1007/s13320-022-0665-6

    Article  ADS  Google Scholar 

  70. M.S. Salisbury, Sensitivity and Signal to Noise Ratio Improvement of a One Micron Ladar System Incorporating a Neodymium Doped Optical Fiber Preamplifier. Laser Radar Testbed, Technical rept. 1 Aug 1991-1 Nov 1993, Report Date 1994-02-28, Accession Number: ADA280235, https://apps.dtic.mil/sti/citations/ADA280235

  71. S. Machida, Y. Yamamoto, Quantum-limited operation of balanced mixer homodyne and heterodyne receivers. IEEE J. Quantum Electron. 22(5), 617–624 (1986). https://doi.org/10.1109/JQE.1986.1073022

    Article  ADS  Google Scholar 

  72. U. Masud, F. Jeribi, A. Mohammad, F. Akram, A. Tahir, M.Y. Naudhani, Two-mode biomedical sensor build-up: characterization of optical amplifier. Comput. Mater. Continua 70(3), 5487–5489 (2021)

    Article  Google Scholar 

  73. J. Price, T. Goble, 10-Signals and noise, in Telecommunications Engineer’s Reference Book. ed. by F. Mazda (Butterworth-Heinemann, Oxford, 1993), pp.101–1015. https://doi.org/10.1016/B978-0-7506-1162-6.50016-2

  74. Team Symbl, Understanding Speech-to-Noise Ratio and Its Impact on Your App, 01-06-2021, https://symbl.ai/developers/blog/understanding-speech-to-noise-ratio-and-its-impact-on-your-app/ (visited on December 21, 2023 - 1654 GMT)

  75. D. Foulger, Models of the Communication Process, Draft: February 25, 2004, https://davis.foulger.info/research/unifiedModelOfCommunication.htm

  76. U. Masud et al., Dual mode spectroscopic biomedical sensor: technical considerations for the wireless testbed. Phys. Scr. 95, 105206 (2020). https://doi.org/10.1088/1402-4896/abb49c

    Article  ADS  Google Scholar 

  77. U. Masud, M.I. Baig, A. Zeeshan, Automatization analysis of the extremely sensitive laser-based dual-mode biomedical sensor. Lasers Med. Sci. 35, 1531–1542 (2020). https://doi.org/10.1007/s10103-019-02945-8

    Article  Google Scholar 

  78. J.-C. Debus, 12-Modelling the damping of piezoelectric structures with ATILA, in In Woodhead Publishing Series in Electronic and Optical Materials, Applications of ATILA FEM Software to Smart Materials. ed. by K. Uchino, J.-C. Debus (Woodhead Publishing, Sawston, 2013), pp.281–304. https://doi.org/10.1533/9780857096319.2.281 (ISBN:9780857090652)

    Chapter  Google Scholar 

  79. D. Zhao, G. Tan, A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng. 66(1–2), 15–24 (2014). https://doi.org/10.1016/j.applthermaleng.2014.01.074

    Article  ADS  Google Scholar 

  80. S.-H. Wei, B. Ma, Z.-S. Chen, Y.-P. Liao, H.-Y. Hao, Y. Zhang, H.-Q. Ni, Z.-C. Niu, Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064 \(\mu \)m. Chin. Phys. B 26(7), 074208 (2007)

    Article  ADS  Google Scholar 

  81. Z. Hao, Z. Deng, L. Liu et al., Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures. Front. Optoelectron. 15, 17 (2022). https://doi.org/10.1007/s12200-022-00020-9

    Article  Google Scholar 

Download references

Funding

This work has been partly supported by the German Academic Exchange Service (Deutsche Akademische Austausch Dienst (DAAD)) and the University of Kassel.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the analysis of results and the preparation of the manuscript. Conceptualization, methodology, supervision and administration were performed by U.M. Formal analysis, investigation and resources were performed by A.R.F. Material preparation, data collection and formal analysis were performed by M.K. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Usman Masud.

Ethics declarations

Conflict of interest

There are no financial interests and no conflicts of interest/conflict of interest to report in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masud, U., Farooqi, A.R. & Kashif, M. Investigation of nonlinear optical effects with fibre Bragg gratings and signal-to-noise ratio in the evolution of highly sensitive system. Eur. Phys. J. D 78, 42 (2024). https://doi.org/10.1140/epjd/s10053-024-00835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00835-5

Navigation