Skip to main content

Advertisement

Log in

Efficient electron acceleration by radially polarized Hermite-Cosh-Gaussian laser beam in an ion channel

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Radially polarized (RP) Hermite-Cosh-Gaussian (HChG) laser beam has been employed to study electron acceleration in an ion channel. As RP-HChG laser beam focus earlier, depending on this property electron acquires high order energy over short periods of time. The ion channel generates an electric field that prevents electrons from escaping from the interaction zone and maintains betatron resonance. Electron’s energy gain has been analyzed by varying different parameters like: intensity parameter (\({\text{a}}_{0}\)), laser spot size (\({\text{r}}_{0}\)), decentered parameter (\({\text{b}}\)), ion density (\({\text{n}}_{{\text{i}}}\)). The combined effect of RP-HChG laser beam and ion channel causes an efficient energy enhancement of electron in the order of GeV. RP-HChG beam is a unique kind of laser beam, combining the characteristics of both Hermite Gaussian and hyperbolic cosine Gaussian modes. It can be tightly focused to produce a small spot with a high-intensity region at the focal point.

Graphical Abstract

The schematic depicts the electron acceleration by Radially Polarised Hermite Cosh Gaussian laser beam in a Plasma Ion Channel. Due to the early focusing effect of the HChG laser beam, it is remarkably better suitable than other laser beams for gaining GeV order energy over short time period. The coordination between better trapping laser light (RP) and electrostatic field of ion density channel encloses the electron to traverse a considerable distance and attains higher energy along longitudinal direction. It is clearly noticed that HChG laser beam is very much sensitive in ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The authors declare that the data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H. Hora, M. Hoelss, W. Scheid, J.W. Wang, Y.K. Ho, F. Osman, R. Castillo, Laser Particle Beams 18, 135 (2000)

    Article  Google Scholar 

  2. P. Sprangle, E. Esarey, J. Krall, Phys. Plasmas 3, 2183 (1996)

    Article  ADS  Google Scholar 

  3. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. Ta Phuoc, Nature Phys., 4 447 (2008).

  4. W. Leemans, E. Esarey, Phys. Today 62, 44 (2009)

    Article  Google Scholar 

  5. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B, Lasers Opt., 74 355 (2002).

  6. T. Tajima, J. Dawson, Phys. Rev. 43, 267 (1979)

    ADS  Google Scholar 

  7. Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, E. Esarey, Phys. Rev. Lett. 77, 4186 (1996)

    Article  ADS  Google Scholar 

  8. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE. J. Quan. Electr. 33, 1879–1914 (1997)

    Article  ADS  Google Scholar 

  9. P. Sprangle, B. Hafizi, J.R. Penano, Phys. Rev. E 61, 4381–4393 (2000)

    Article  ADS  Google Scholar 

  10. B. Hafizi, A. Ting, R.F. Hubbard, P. Sprangle, J.R. Penano, Phys. Plasmas 10, 1483–1492 (2003)

    Article  ADS  Google Scholar 

  11. Y. Kitagawa, Y. Sentoku, S. Akamatsu, W. Sakamoto, R. Kodama, K.A. Tanaka, K. Azumi, T. Norimatsu, T. Matsuoka, H. Fujita, H. Yoshida, Phys. Rev. Lett. 92, 205002 (2004)

    Article  ADS  Google Scholar 

  12. F. Dorchies, J.R. Marques, B. Cros, G. Matthieussent, C. Courtois, T. Velikoroussov, P. Audebert, J.P. Geindre, S. Rebibo, G. Hamoniaux, F. Amiranoff, Phys. Rev. Lett. 82, 4655 (1999)

    Article  ADS  Google Scholar 

  13. T. Hosokai, M. Kando, H. Dewa, H. Kotaki, S. Kondo, N. Hasegawa, K. Nakajima, K. Horioka, Opt. Lett. 25, 10 (2000)

    Article  ADS  Google Scholar 

  14. A. Butler, D.J. Spence, S.M. Hooker, Phys. Rev. Lett. 89, 185003 (2002)

    Article  ADS  Google Scholar 

  15. T. Kameshima, H. Kotaki, M. Kando, I. Daito, K. Kawase, Y. Fukuda, L.M. Chan, T. Homma, S. Kondo, TZh. Esirkepov, N.A. Bobrova, P.V. Sasorov, S.V. Bulanov, Phys. Plasmas 16, 093101 (2009)

    Article  ADS  Google Scholar 

  16. T. Hosokai, A. Zhidkov, A. Yamazaki, Y. Mizuta, M. Uesaka, R. Kodama, Appl. Phys. Lett. 96, 121501 (2010)

    Article  ADS  Google Scholar 

  17. C.G. Durfee, H.M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)

    Article  ADS  Google Scholar 

  18. T.R. Clark, H.M. Milchberg, Phys. Rev. E 61, 1954 (2000)

    Article  ADS  Google Scholar 

  19. K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, M. Baine, Phys. Rev. Lett. 78, 4047 (1997)

    Article  ADS  Google Scholar 

  20. A. Giulietti, P. Tomassini, M. Galimberti, D. Giulietti, L.A. Gizzi, P. Koester, L. Labate, T. Ceccotti, P. D’Oliveria, T. Auguste, P. Monot, P. Martin, Phys. Plasmas 13, 093103 (2006)

    Article  ADS  Google Scholar 

  21. S. Kneip, S. R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R. Heathcote, S. P. D. Mangles, J. R. Marques, A. Maksimchuk, P. M. Nilson, K. Ta Phuoc, S. Reed, M. Tzoufras, F. S. Tsung, L. Willingale, W. B. Mori, A. Rousse, K. Krushelnick, and Z. Najmudin, Phys. Rev. Lett. 100 105006 (2008).

  22. S. Kneip, C. McGuffey, S. R. Nagel, C. Palmer, C. Bellei, J. Schreiber, C. Huntington, F. Dollar, T. Matsuoka, V. Chvykov, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Ta Phuoc, S. P. D. Mangles, K. Krushelnick, and Z. Najmudin, Proc. SPIE 7359 73590T (2009).

  23. C. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, P. Thirolf, D. Habs, C. Delfin, C.-G. Wahlstrom, Phys. Plasmas 9, 987 (2002)

    Article  ADS  Google Scholar 

  24. B.R. Walton, S.P.D. Mangles, Z. Najmudin, M. Tatarakis, M.S. Wei, A. Gopal, C. Marle, A.E. Dangor, K. Krushelnick, S. Fritzler, V. Malka, R.J. Clarke, C. Hernandez-Gomez, Phys. Plasmas 13, 113103 (2006)

    Article  ADS  Google Scholar 

  25. A. Pukhov, Z.-M. Sheng, J. Meyer-ter-Vehn, Phys. Plasmas 6, 2847 (1999)

    Article  ADS  Google Scholar 

  26. A.V. Arefiev, B.N. Breizman, M. Schollmeier, V.N. Khudik, Phys. Rev. Lett. 108, 145004 (2012)

    Article  ADS  Google Scholar 

  27. A.P.L. Robinson, A.V. Arefiev, D. Neely, Phys. Rev. Lett. 111, 065002 (2013)

    Article  ADS  Google Scholar 

  28. N. Naseri, D. Pesme, W. Rozmus, K. Popov, Phys. Rev. Lett. 108, 105001 (2012)

    Article  ADS  Google Scholar 

  29. A.K. Upadhyay, V. Singh, P. Jha, Plasma Phys. Contr. Fusion 51, 105011 (2009)

    Article  ADS  Google Scholar 

  30. S.V. Bulanov, TZh. Esirkepov, G. Korn, Plasma Phys. Rep 41, 1 (2015)

    Article  ADS  Google Scholar 

  31. M. Murakami, J.J. Honrubia, K. Weichman, A.V. Arefiev, S.V. Bulanov, Scientific Report 10, 16653 (2020)

    Article  Google Scholar 

  32. K. Weichman, M. Murakami, A.P.L. Robinson, Applied Phys Letts. 117, 244101 (2020)

    Article  ADS  Google Scholar 

  33. K. Weichman, Phys. Rev. Res. 4, 1042017 (2022)

    Article  Google Scholar 

  34. A. Mehta, J. Rajput, J., and N. Kant, Optik, 248, 168068 (2021).

  35. A. Belafhal, M. Ibnchaikh, Optics Communications 186, 269 (2000)

    Article  ADS  Google Scholar 

  36. S. Patil, M. Takale, V. Fulari, M. Dongare, J. Mod. Opt. 55, 3529 (2008)

    Article  ADS  Google Scholar 

  37. S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, Laser Particle Beams 28, 343 (2010)

    Article  Google Scholar 

  38. H.S. Ghotra, D. Jaroszynski, B. Ersfeld, N.S. Saini, S. Yoffe, N. Kant, Laser Part. Beams 36, 154 (2018)

    Article  ADS  Google Scholar 

  39. M. Kaur, D.N. Gupta, IEEE Trans. Plasma. Sci. 45, 2841 (2017)

    Article  ADS  Google Scholar 

  40. J. Singh, J. Rajput, H.S. Ghotra, N. Kant, Commun. Theor. Phys. 73, 095502 (2022)

    Article  ADS  Google Scholar 

  41. L. Cicchitelli, H. Hora, and R. Postle, Phys. Rev. A, Gen. Phys., 41 3727 (1990).

  42. V.K. Tripathi, T. Taguchi, C.S. Liu, Phys. Plasmas 12, 043106 (2005)

    Article  ADS  Google Scholar 

  43. A.K. Pramanik, H.S. Ghotra, N. Kant, J. Rajput, Laser Phys. Lett. 19, 075301 (2022)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AKP carried out the derivation, methodology, analytical modeling and graph plotting part. HSG participated in the result discussion and JR conducted overall supervision in analytical modelling, graph plotting and editing of the manuscript.

Corresponding author

Correspondence to Jyoti Rajput.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A.K., Ghotra, H.S. & Rajput, J. Efficient electron acceleration by radially polarized Hermite-Cosh-Gaussian laser beam in an ion channel. Eur. Phys. J. D 77, 161 (2023). https://doi.org/10.1140/epjd/s10053-023-00740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00740-3

Navigation