Skip to main content

Advertisement

Log in

Electron acceleration by a tightly focused laser pulse in an ion channel

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We examine the electron acceleration by tightly focused radially polarized laser beam in a preformed ion channel. The tight focusing and polarization of laser beam takes the advantage of extremely intense and asymmetric fields. The longitudinal electric field component at the beam center helps in trapping of electrons. For effective acceleration, the preformed ion plasma channel behaves as an applied external magnetic field. The electrostatic space charge field of this preformed ion channel helps in trapping of electrons and confined them to the accelerating phase. The gain in the energy of the electron is due to the fact that the radial component of electric field becomes zero on the propagation axis and only longitudinal component survives which accelerate the electrons in the longitudinal direction to high energy. The electrostatic space charge field assists in confining the motion of electrons from transverse oscillation and injects them to accelerating field which causes a resonance between electric field of laser and electrons. Because of combined role of tightly focused radially polarized laser and ion channel, the electrons can gain energy of the order of GeV.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study is available with corresponding author. It will be provided upon reasonable request.]

References

  1. E. Esarey, P. Sprangle, J. Krall, Phys. Rev. E 52, 5443 (1995)

    Article  ADS  Google Scholar 

  2. S.G. Bochkarev, A.V. Brantov, V.Y. Bychenkov, D.V. Torshin, V.F. Kovalev, G.V. Baidin, V.A. Lykov, Reports 40, 202 (2014)

    Google Scholar 

  3. M.P. Liu, H.C. Wu, B.S. Xie, M.Y. Yu, Phys. Plasmas 15, 023108 (2008)

    Article  ADS  Google Scholar 

  4. M. Thevenet, A. Leblanc, S. Kahaly, H. Kahaly, H. Vincenti, A. Vernier, F. Quere, J. Faure, Nat. Phys. 12, 355 (2016)

    Article  Google Scholar 

  5. R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

    Article  ADS  Google Scholar 

  6. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, X. Zhang, W. Henderson, Y.Y. Chang, R. Korzekwa, H.E. Tsai, C.H. Pai, H. Quevedo, G. Dyer, E. Gau, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Nat. Commun. 4, 1988 (2012)

  7. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431, 7008 (2004)

    Article  Google Scholar 

  8. W. Leemans, E. Esarey, Phys. Today 62(3), 44 (2009)

    Article  Google Scholar 

  9. G.D. Tsakiris, C. Gahn, V.K. Tripathi, Phys. Plasmas 7, 3017 (2002)

    Article  ADS  Google Scholar 

  10. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1997)

    Article  ADS  Google Scholar 

  11. H.S. Ghotra, N. Kant, Opt. Commun. 365, 231–236 (2016)

    Article  ADS  Google Scholar 

  12. L.W. Zhu, Z.M. Sheng, M.Y. Yu, Phys. Plasmas 20, 113112 (2013)

    Article  ADS  Google Scholar 

  13. A. Arefiev, Z. Gong, A.P.L. Robinson, Phys. Rev. E 101, 043201 (2020)

    Article  ADS  Google Scholar 

  14. S. Payeur, S. Fourmaux, B.E. Schmidt, J.P. MacLean, C. Tchervenkov, F. Legare, M. Piche, J.C. Kieffer, Appl. Phys. Lett. 101, 041105 (2012)

    Article  ADS  Google Scholar 

  15. D.N. Gupta, N. Kant, D.E. Kim, H. Suk, Phys. Lett. A 368, 402–407 (2007)

    Article  ADS  Google Scholar 

  16. Q. Zhan, Opt. Exp. 12, 3377 (2004)

    Article  ADS  Google Scholar 

  17. R. Dorn, S. Quabis, G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  18. V.H. Mellado, S. Hacyan, R. Jauregui, Laser Part. Beams 24, 559–566 (2006)

    Article  ADS  Google Scholar 

  19. B. Hafizi, A.K. Ganguly, A. Ting, C.I. Moore, P. Sprangle, Phys. Rev. E 60, 4779 (1999)

    Article  ADS  Google Scholar 

  20. F.V. Hartemann, J.R.V. Meter, A.L. Troha, E.C. Landahl, N.C. Luhmann Jr., H.A. Baldis, A. Gupta, A.K. Kerman, Phys. Rev. E 58, 5001 (1998)

    Article  ADS  Google Scholar 

  21. J. Singh, J. Rajput, H.S. Ghotra, N. Kant, Commun. Theor. Phys. 73, 095502 (2021)

    Article  ADS  Google Scholar 

  22. H.S. Ghotra, N. Kant, Opt. Commun. 356, 118–122 (2015)

    Article  ADS  Google Scholar 

  23. Y.I. Salamin, C.H. Keitel, Phys. Rev. Lett. 88, 095005 (2002)

    Article  ADS  Google Scholar 

  24. H.S. Ghotra, N. Kant, Phys. Plasmas 23, 013101 (2016)

    Article  ADS  Google Scholar 

  25. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. Aprill, B. Schmidt, P.L. Fortin, N. Thire, T. Brabec, F. Legare, J.C. Kleffer, M. Piche, Appl. Sci. 3, 70 (2013)

    Article  Google Scholar 

  26. S.V. Bulanov, F.F. Kamenets, F. Pegoraro, A.M. Pukhov, Phys. Lett. A 195, 84 (1994)

    Article  ADS  Google Scholar 

  27. H. Mehdian, A. Hasanbeigi, S. Jafari, Phys. Plasmas 17, 023112 (2010)

    Article  ADS  Google Scholar 

  28. U.H. Hwang, H. Mehdian, J.E. Willett, Y.M. Aktas, Phys. Plasmas 9, 1010 (2002)

    Article  ADS  Google Scholar 

  29. A.V. Arefiev, V.N. Khudik, M. Schollmeier, Phys. Plasmas 21, 033104 (2014)

    Article  ADS  Google Scholar 

  30. N. Kumar, V.K. Tripathi, Europhys. Lett. 75, 260 (2006)

    Article  ADS  Google Scholar 

  31. M. Wen, Y.I. Salamin, C.H. Keitel, Opt. Express 27, 557 (2019)

    Article  ADS  Google Scholar 

  32. Y.I. Salamin, Opt. Lett. 31, 2619 (2006)

    Article  ADS  Google Scholar 

  33. M. Vranic, R.A. Fonseca, L.O. Silva, Plasma Phys. Control Fus. 60, 034002 (2018)

    Article  ADS  Google Scholar 

  34. N.A. Bobrova, P.V. Sasorov, C. Benedetti, S.S. Bulanov, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, Phys. Plasmas 20, 020703 (2013)

    Article  ADS  Google Scholar 

  35. K. Krushelnick, A. Ting, C.I. Moore, H.R. Burris, E. Esarey, P. Sprangle, M. Baine, Phys. Rev. Lett. 78, 21 (1997)

    Article  Google Scholar 

  36. T. Wang, Z. Gong, K. Chin, A. Arefiev, Plasma Phys. Control Fus. 61, 084004 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Ram Jeet, is thankful to University Grant Commission (UGC), New Delhi, India, for financial support in form of UGC-SRF scholarship and also thankful to Prof. Vipin Kumar Tripathi for his valuable suggestions and fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Niti Kant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeet, R., Ghotra, H.S., Kumar, A. et al. Electron acceleration by a tightly focused laser pulse in an ion channel. Eur. Phys. J. D 75, 268 (2021). https://doi.org/10.1140/epjd/s10053-021-00280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00280-8

Navigation