Skip to main content
Log in

Improve the performance of reference-frame-independent measurement-device-independent quantum key distribution with heralded single-photon sources

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The performance degradation of reference-frame-independent measurement-device-independent quantum key distribution (RFI-MDI-QKD) protocol caused by the finite key size effect impedes its practical implementation. The protocol utilizes the double-scanning method, which makes it possible to precisely estimate both the counts of single-photon pairs and the phase-flip error. This method effectively counteracts the statistical fluctuation brought on by the finite key size effect. Based on this method, we propose a scheme in this work that substitutes heralded single-photon sources (HSPS) for weak coherent sources (WCS), and we compare the performance of the two schemes by calculating the key rate. The RFI-MDI-QKD using HSPS, according to the results of the simulation, has a lower key rate than the RFI-MDI-QKD using WCS, but it also has a longer transmission distance and a more noticeable improvement in transmission distance at larger rotation angles. Thus, we demonstrate that the RFI-MDI-QKD protocol, based on the double-scanning method and using HSPS, has promising future application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. H. Lo, H. Chau, Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999). https://doi.org/10.1126/science.283.5410.2050

    Article  ADS  Google Scholar 

  2. P. Shor, J. Preskill, Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000). https://doi.org/10.1103/PhysRevLett.85.441

    Article  ADS  Google Scholar 

  3. D. Mayers, Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001). https://doi.org/10.1145/382780.382781

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Renner, Security of quantum key distribution. Int. J. Quantum Inf. 6(1), 1–127 (2008). https://doi.org/10.1142/S0219749908003256

    Article  MATH  Google Scholar 

  5. C.H. Bennett, G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, Bangalore, India, 1984), pp. 175–179

  6. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, Z.-F. Han, 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008–1010 (2012). https://doi.org/10.1364/OL.37.001008

    Article  ADS  Google Scholar 

  7. T. Sasaki, Y. Yamamoto, M. Koashi, Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014). https://doi.org/10.1038/nature13303

    Article  ADS  Google Scholar 

  8. M. Lucamarini, Z.L. Yuan, J.F. Dynes, A.J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature (2018). https://doi.org/10.1038/s41586-018-0066-6

    Article  Google Scholar 

  9. N. Lutkenhaus, M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. (2002). https://doi.org/10.1088/1367-2630/4/1/344

    Article  Google Scholar 

  10. X. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. (2005). https://doi.org/10.1103/PhysRevLett.94.230503

    Article  Google Scholar 

  11. H. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. (2005). https://doi.org/10.1103/PhysRevLett.94.230504

    Article  Google Scholar 

  12. H.-K. Lo, M. Curty, B. Qi, Measurement-device-independent quantum key distribution. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  MATH  Google Scholar 

  13. S.L. Braunstein, S. Pirandola, Side-channel-free quantum key distribution. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.108.130502

    Article  Google Scholar 

  14. Z.-W. Yu, Y.-H. Zhou, X.-B. Wang, Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A (2015). https://doi.org/10.1103/PhysRevA.91.032318

    Article  Google Scholar 

  15. Y.-H. Zhou, Z.-W. Yu, X.-B. Wang, Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A (2016). https://doi.org/10.1103/PhysRevA.93.042324

    Article  Google Scholar 

  16. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M.J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan, Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. (2016). https://doi.org/10.1103/PhysRevLett.117.190501

    Article  Google Scholar 

  17. C.-H. Zhang, C.-M. Zhang, G.-C. Guo, Q. Wang, Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources. Opt. Express 26(4), 4219–4229 (2018). https://doi.org/10.1364/OE.26.004219

    Article  ADS  Google Scholar 

  18. Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan, Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125, 260503 (2020). https://doi.org/10.1103/PhysRevLett.125.260503

    Article  ADS  Google Scholar 

  19. X.-Y. Zhou, H.-J. Ding, C.-H. Zhang, J. Li, C.-M. Zhang, Q. Wang, Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources. Opt. Lett. 45(15), 4176–4179 (2020). https://doi.org/10.1364/OL.398993

    Article  ADS  Google Scholar 

  20. H.-J. Ding, J.-Y. Liu, X.-Y. Zhou, C.-H. Zhang, J. Li, Q. Wang, Improved finite-key security analysis of measurement-device-independent quantum key distribution against a trojan-horse attack. Phys. Rev. Appl. 19, 044022 (2023). https://doi.org/10.1103/PhysRevApplied.19.044022

    Article  ADS  Google Scholar 

  21. Y. Li, Z.-Q. Sun, P.-Y. Li, Z.-H. Li, J.-P. Wang, L. Zhou, H.-Q. Ma, Polarization and orbital angular momentum coupling for high-dimensional measurement-device-independent quantum key distribution protocol. Quantum Inf. Process. (2023). https://doi.org/10.1007/s11128-023-03886-6

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Laing, V. Scarani, J.G. Rarity, J.L. O’Brien, Reference-frame-independent quantum key distribution. Phys. Rev. A (2010). https://doi.org/10.1103/PhysRevA.82.012304

    Article  Google Scholar 

  23. Z.-Q. Yin, S. Wang, W. Chen, H.-W. Li, G.-C. Guo, Z.-F. Han, Reference-free-independent quantum key distribution immune to detector side channel attacks. Quantum Inf. Process. 13(5), 1237–1244 (2014). https://doi.org/10.1007/s11128-013-0726-2

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, Z.-F. Han, Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. (2015). https://doi.org/10.1103/PhysRevLett.115.160502

    Article  Google Scholar 

  25. H. Liu, J. Wang, H. Ma, S. Sun, Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica 5(8), 902–909 (2018). https://doi.org/10.1364/OPTICA.5.000902

    Article  ADS  Google Scholar 

  26. Z. Li, H. Liu, J. Wang, S. Yang, T. Dou, W. Qu, F. Zhou, Y. Huang, Z. Sun, Y. Han, G. Miao, H. Ma, Reference-frame-independent measurement-device-independent quantum key distribution with mismatched-basis statistics. Opt. Lett. 45(22), 6334–6337 (2020). https://doi.org/10.1364/OL.403481

    Article  ADS  Google Scholar 

  27. F.-Y. Lu, Z.-Q. Yin, G.-J. Fan-Yuan, R. Wang, H. Liu, S. Wang, W. Chen, D.-Y. He, W. Huang, B.-J. Xu, G.-C. Guo, Z.-F. Han, Efficient decoy states for the reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 101, 052318 (2020). https://doi.org/10.1103/PhysRevA.101.052318

    Article  ADS  Google Scholar 

  28. J.-R. Zhu, C.-M. Zhang, Q. Wang, Reference-frame-independent measurement-device-independent quantum key distribution with imperfect sources. J. Phys. B At. Mol. Opt. Phys. 54(14), 145501 (2021). https://doi.org/10.1088/1361-6455/ac0c05

    Article  ADS  Google Scholar 

  29. M. Curty, F. Xu, W. Cui, C.C.W. Lim, K. Tamaki, H.-K. Lo, Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4732

    Article  Google Scholar 

  30. L. Sheridan, T.P. Le, V. Scarani, Finite-key security against coherent attacks in quantum key distribution. New J. Phys. (2010). https://doi.org/10.1088/1367-2630/12/12/123019

  31. C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han, Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4(9), 1016–1023 (2017). https://doi.org/10.1364/OPTICA.4.001016

  32. C. Jiang, Z.-W. Yu, X.-L. Hu, X.-B. Wang, Higher key rate of measurement-device-independent quantum key distribution through joint data processing. Phys. Rev. A (2021). https://doi.org/10.1103/PhysRevA.103.012402

    Article  Google Scholar 

  33. D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970). https://doi.org/10.1103/PhysRevLett.25.84

    Article  ADS  Google Scholar 

  34. Q. Wang, X.-B. Wang, G.-C. Guo, Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A (2007). https://doi.org/10.1103/PhysRevA.75.012312

    Article  Google Scholar 

  35. Q. Wang, A. Karlsson, Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the poisson distribution. Phys. Rev. A (2007). https://doi.org/10.1103/PhysRevA.76.014309

    Article  Google Scholar 

  36. F. Xu, H. Xu, H.-K. Lo, Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A (2014). https://doi.org/10.1103/PhysRevA.89.052333

    Article  Google Scholar 

  37. Q. Wang, X.-B. Wang, Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A (2013). https://doi.org/10.1103/PhysRevA.88.052332

    Article  Google Scholar 

  38. Q. Wang, X.-B. Wang, Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. (2014). https://doi.org/10.1038/srep04612

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude for financial support from the Fundamental Research Funds for the Central Universities No. 2019XD-A02, and the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) No. IPOC2021ZT10.

Funding

This study was funded by the Fundamental Research Funds for the Central Universities No. 2019XD-A02, and the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) No. IPOC2021ZT10.

Author information

Authors and Affiliations

Authors

Contributions

LZ performed the data analyses and wrote the manuscript; ZL contributed significantly to the analysis and manuscript preparation; JW and ZS contributed to the conception of the study; YL helped perform the analysis with constructive discussions; HM approved the final submission of the manuscript.

Corresponding author

Correspondence to Haiqiang Ma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, Z., Wang, J. et al. Improve the performance of reference-frame-independent measurement-device-independent quantum key distribution with heralded single-photon sources. Eur. Phys. J. D 77, 156 (2023). https://doi.org/10.1140/epjd/s10053-023-00737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00737-y

Navigation