Skip to main content
Log in

Revisiting photoisomerization in fluorinated analogues of acetylacetone trapped in cryogenic matrices

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

UV-induced processes are commonly studied in acetylacetone analogues. In this contribution, we revisit the existing work on the photoisomerization process in some of the fluorinated analogues of acetylacetone, i.e., trifluoroacetylacetone (F3-acac) and hexafluoroacetylacetone (F6-acac). We performed selective UV laser excitation of these molecules trapped in soft cryogenic matrices, namely neon and para-hydrogen, and probed by vibrational spectroscopy. Clear spectroscopy of 3 isomers of F6-acac and 6 isomers of F3-acac is obtained, including the first characterization of a second open enol isomer of hexafluoroacetylacetone. In addition, we present the electronic absorption spectra of both molecules in cryogenic matrices before and after specific UV irradiations, giving new data on the electronic transitions of photoproducts. Vibrational and electronic experimental results are analyzed and discussed within comparisons with DFT and TD-DFT calculations. Our findings contribute to a deeper understanding of the photoisomerization process in these molecules after electronic excitation in gas and condensed phase.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This article has data included as electronic supplementary information. Additional data will be made available on reasonable request.

References

  1. A.L. Andreassen, D. Zebelman, S.H. Bauer, Hexafluoroacetylacetone and hexafluoroacetic anhydride. J. Am. Chem. Soc. 93, 1148–1152 (1971). https://doi.org/10.1021/ja00734a020

    Article  Google Scholar 

  2. K. Iijima, Y. Tanaka, S. Onuma, Internal rotation of trifluoromethyl groups in hexafluoroacetylacetone. J. Mol. Struct. 268, 315–318 (1992). https://doi.org/10.1016/0022-2860(92)85081-Q

    Article  ADS  Google Scholar 

  3. L. Evangelisti, S. Tang, B. Velino et al., Hexafluoroacetylacetone: a ‘rigid’ molecule with an enolic Cs shape. Chem. Phys. Lett. 473, 247–250 (2009). https://doi.org/10.1016/j.cplett.2009.03.080

    Article  ADS  Google Scholar 

  4. P. Burk, I.A. Koppel, An AM1 and PM3 study of hexafluoroacetylacetone. J. Mol. Struct. Thoechem 282, 277–282 (1993). https://doi.org/10.1016/0166-1280(93)85012-N

    Article  Google Scholar 

  5. G. Buemi, Ab initio DFT study of the hydrogen bridges in hexafluoro-acetylacetone, trifluoro-acetylacetone and some 3-substituted derivatives. J. Mol. Struct. Thoechem 499, 21–34 (2000). https://doi.org/10.1016/S0166-1280(99)00265-1

    Article  Google Scholar 

  6. C. Chatterjee, C.D. Incarvito, L.A. Burns, P.H. Vaccaro, Electronic structure and proton transfer in ground-state hexafluoroacetylacetone. J. Phys. Chem. A 114, 6630–6640 (2010). https://doi.org/10.1021/jp101224e

    Article  Google Scholar 

  7. S.F. Tayyari, Th. Zeegers-Huyskens, J.L.L. Wood, Spectroscopic study of hydrogen bonding in the enol form of β-diketones-I. Vibrational assignment and strength of the bond. Spectrochim. Acta A 35A, 1265–1275 (1979). https://doi.org/10.1016/0584-8539(79)80208-1

    Article  ADS  Google Scholar 

  8. H. Nakanishi, H. Morita, S. Nagakura, Charge-transfer character in the intramolecular hydrogen bond: vacuum ultraviolet spectra of acetylacetone and its fluoro derivatives. Bull. Chem. Soc. Jpn. 51, 1723–1729 (1978). https://doi.org/10.1246/bcsj.51.1723

    Article  Google Scholar 

  9. N. Nagashima, S. Kudoh, M. Nakata, Infrared and UV-visible absorption spectra of hexafluoroacetylacetone in a low-temperature argon matrix. I. Structure of a non-chelated enol-type isomer. Chem. Phys. Lett. 374, 59–66 (2003). https://doi.org/10.1016/S0009-2614(03)00688-2

    Article  ADS  Google Scholar 

  10. N. Nagashima, S. Kudoh, M. Nakata, Infrared and UV-visible absorption spectra of hexafluoroacetylacetone in a low-temperature argon matrix. II. Detection of the nπ* transition by monitoring IR spectral changes due to photoisomerization. Chem. Phys. Lett. 374, 67–73 (2003). https://doi.org/10.1016/S0009-2614(03)00689-4

    Article  ADS  Google Scholar 

  11. J.E. Bassett, E. Whittle, The photochemistry of hexafluoroacetylacetone in the vapour phase. Occurrence of a novel HF elimination reaction. Int. J. Chem. Kinet. 8, 859–876 (1976). https://doi.org/10.1002/kin.550080606

    Article  Google Scholar 

  12. M.-C. Yoon, Y.S. Choi, S.K. Kim, Photodissociation dynamics of acetylacetone: the OH product state distribution. J. Chem. Phys. 110, 11850 (1999). https://doi.org/10.1063/1.479126

    Article  ADS  Google Scholar 

  13. K.J. Muyskens, J.R. Alsum, T.A. Thielke et al., Photochemistry of UV-excited trifluoroacetylacetone and hexafluoroacetylacetone I: Infrared spectra of fluorinated methylfuranones formed by HF photoelimination. J. Phys. Chem. A 116, 12305–12313 (2012). https://doi.org/10.1021/jp307725z

    Article  Google Scholar 

  14. E.A. Haugen, D. Hait, V. Scutelnic et al., Ultrafast X-ray spectroscopy of intersystem crossing in hexafluoroacetylacetone: chromophore photophysics and spectral changes in the face of electron-withdrawing groups. J. Phys. Chem. A 127, 634–644 (2023). https://doi.org/10.1021/acs.jpca.2c06044

    Article  Google Scholar 

  15. A. Bhattacherjee, P.C. Das, K. Schnorr et al., Ultrafast Intersystem crossing in acetylacetone via femtosecond X-ray transient absorption at the carbon K-edge. J. Am. Chem. Soc. 139, 16576–16583 (2017). https://doi.org/10.1021/jacs.7b07532

    Article  Google Scholar 

  16. A.L. Andreassen, S.H. Bauer, The structures of acetylacetone, trifluoroacetyl-acetone and trifluoroacetone. J. Mol. Struct. 12, 381–403 (1972). https://doi.org/10.1016/0022-2860(72)87047-9

    Article  ADS  Google Scholar 

  17. M.S. Gordon, R.D. Koob, An INDO investigation of the structure and bonding of acetylacetone and trifluoroacetylacetone. J. Am. Chem. Soc. 433, 5863–5867 (1973)

    Article  Google Scholar 

  18. H. Raissi, A. Nowroozi, M. Roozbeh, F. Farzad, Molecular structure and vibrational assignment of (trifluoroacetyl) acetone: a density functional study. J. Mol. Struct. 787, 148–162 (2006). https://doi.org/10.1016/j.molstruc.2005.10.042

    Article  ADS  Google Scholar 

  19. L.B. Favero, L. Evangelisti, B. Velino, W. Caminati, Morphing the internal dynamics of acetylacetone by CH3 → CF3 substitutions. The rotational spectrum of trifluoroacetylacetone. J. Phys. Chem. A 118, 4243–4248 (2014). https://doi.org/10.1021/jp5005727

    Article  Google Scholar 

  20. V.V. Sliznev, S.B. Lapshina, G.V. Girichev, Ab initio structure investigation of the enol forms of β-diketones RCOCH2COR (R=H, CH3, CF3). J. Struct. Chem. 43, 47–55 (2002). https://doi.org/10.1023/A:1016065614664

    Article  Google Scholar 

  21. A. Gutiérrez-Quintanilla, R. Platakyte, M. Chevalier et al., Hidden isomer of trifluoroacetylacetone revealed by matrix isolation infrared and Raman spectroscopy. J. Phys. Chem. A 125, 2249–2266 (2021). https://doi.org/10.1021/acs.jpca.0c10945

    Article  Google Scholar 

  22. M. Zahedi-Tabrizi, F. Tayyari, Z. Moosavi-Tekyeh et al., Structure and vibrational assignment of the enol form of 1,1,1-trifluoro-2,4-pentanedione. Spectrochim. Acta A Mol. Biomol. Spectrosc. 65, 387–396 (2006). https://doi.org/10.1016/j.saa.2005.11.019

    Article  ADS  Google Scholar 

  23. Y. Minoura, N. Nagashima, S. Kudoh, M. Nakata, Mechanism of UV-induced conformational changes among enol-type isomers of (Trifluoroacetyl)acetone studied by low-temperature matrix-isolation infrared spectroscopy and density functional theory calculation. J. Phys. Chem. A 108, 2353–2362 (2004). https://doi.org/10.1021/jp031192y

    Article  Google Scholar 

  24. A. Gutiérrez-Quintanilla, M. Chevalier, C. Crépin, Double deuterated acetylacetone in neon matrices: infrared spectroscopy, photoreactivity and the tunneling process. Phys. Chem. Chem. Phys. 18, 20713–20725 (2016). https://doi.org/10.1039/C6CP02796B

    Article  Google Scholar 

  25. R.R. Lozada-García, J. Ceponkus, M. Chevalier et al., Photochemistry of acetylacetone isolated in parahydrogen matrices upon 266 nm irradiation. Phys. Chem. Chem. Phys. 14, 3450 (2012). https://doi.org/10.1039/c2cp23913b

    Article  Google Scholar 

  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09 Revision D.01 (2009)

  27. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  28. Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  Google Scholar 

  29. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (2008). https://doi.org/10.1063/1.438955

    Article  ADS  Google Scholar 

  30. N.M. Kreienborg, C. Merten, How to treat C-F stretching vibrations? A vibrational CD study on chiral fluorinated molecules. Phys. Chem. Chem. Phys. 21, 3506–3511 (2019). https://doi.org/10.1039/C8CP02395F

    Article  Google Scholar 

  31. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984). https://doi.org/10.1103/PhysRevLett.52.997

    Article  ADS  Google Scholar 

  32. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996). https://doi.org/10.1016/0009-2614(96)00440-X

    Article  ADS  Google Scholar 

  33. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998). https://doi.org/10.1063/1.475855

    Article  ADS  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16 Revision B.01 (2016)

  35. E.R. Johnson, S. Keinan, P. Mori-Sánchez et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010). https://doi.org/10.1021/ja100936w

    Article  Google Scholar 

  36. J. Contreras-García, E.R. Johnson, S. Keinan et al., NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011). https://doi.org/10.1021/ct100641a

    Article  Google Scholar 

  37. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  38. A. Gutiérrez Quintanilla, Molecules and complexes with hydrogen bond: solvation and photoreactivity in cryogenic matrices. Université de Paris-Saclay (2016)

  39. S.F. Tayyari, A. Najafi, R. Afzali et al., Structure and vibrational assignment of the enol form of 1-chloro-1,1-difluoro-pentane-2,4-dione. J. Mol. Struct. 878, 10–21 (2008). https://doi.org/10.1016/j.molstruc.2007.07.040

    Article  ADS  Google Scholar 

  40. A. Nowroozi, H. Roohi, M.S. Sadeghi Ghoogheri, M. Sheibaninia, The competition between the intramolecular hydrogen bond and π-electron delocalization in trifluoroacetylacetone—a theoretical study. Int. J. Quantum Chem. 111, 578–585 (2011). https://doi.org/10.1002/qua.22129

    Article  Google Scholar 

  41. A. Trivella, P. Roubin, P. Theulé et al., UV and IR photoisomerization of acetylacetone trapped in a nitrogen matrix. J. Phys. Chem. A 111, 3074–3081 (2007). https://doi.org/10.1021/jp068763h

    Article  Google Scholar 

  42. X.-B. Chen, W.-H. Fang, D.L. Phillips, Theoretical studies of the photochemical dynamics of acetylacetone: isomerzation, dissociation, and dehydration reactions. J. Phys. Chem. A 110, 4434–4441 (2006). https://doi.org/10.1021/jp057306i

    Article  Google Scholar 

  43. R.J. Squibb, M. Sapunar, A. Ponzi et al., Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018). https://doi.org/10.1038/s41467-017-02478-0

    Article  ADS  Google Scholar 

  44. A. Trivella, T.N. Wassermann, J.M. Mestdagh et al., New insights into the photodynamics of acetylacetone: isomerization and fragmentation in low-temperature matrixes. Phys. Chem. Chem. Phys. 12, 8300 (2010). https://doi.org/10.1039/c003593a

    Article  Google Scholar 

  45. S. Xu, S.T. Park, J.S. Feenstra et al., Ultrafast electron diffraction: structural dynamics of the elimination reaction of acetylacetone. J. Phys. Chem. A 108, 6650–6655 (2004). https://doi.org/10.1021/jp0403689

    Article  Google Scholar 

  46. L. Poisson, P. Roubin, S. Coussan et al., Ultrafast dynamics of acetylacetone (2,4-pentanedione) in the S2 state. J. Am. Chem. Soc. 130, 2974–2983 (2008). https://doi.org/10.1021/ja0730819

    Article  Google Scholar 

  47. P.K. Verma, F. Koch, A. Steinbacher et al., Ultrafast UV-induced photoisomerization of intramolecularly H-bonded symmetric β-diketones. J. Am. Chem. Soc. 136, 14981–14989 (2014). https://doi.org/10.1021/ja508059p

    Article  Google Scholar 

  48. N. Nagashima, S. Kudoh, M. Takayanagi, M. Nakata, UV-induced photoisomerization of acetylacetone and identification of less-stable isomers by low-temperature matrix-isolation infrared spectroscopy and density functional theory calculation. J. Phys. Chem. A 105, 10832–10838 (2001). https://doi.org/10.1021/jp012557m

    Article  Google Scholar 

  49. A. Trivella, S. Coussan, T. Chiavassa et al., Comparative study of structure and photo-induced reactivity of malonaldehyde and acetylacetone isolated in nitrogen matrices. Low Temp. Phys. 32, 1042–1049 (2006). https://doi.org/10.1063/1.2389011

    Article  ADS  Google Scholar 

  50. A.J. Lopes Jesus, C.M. Nunes, I. Reva et al., Effects of entangled IR radiation and tunneling on the conformational interconversion of 2-cyanophenol. J. Phys. Chem. A 123, 4396–4405 (2019). https://doi.org/10.1021/acs.jpca.9b01382

    Article  Google Scholar 

  51. A. Gutiérrez-Quintanilla, M. Chevalier, R. Platakyte et al., Intramolecular hydrogen tunneling in 2-chloromalonaldehyde trapped in solid para -hydrogen. Phys. Chem. Chem. Phys. 22, 6115–6121 (2020). https://doi.org/10.1039/C9CP06866J

    Article  Google Scholar 

  52. B. Chmura, M.F. Rode, A.L. Sobolewski et al., A computational study on the mechanism of intramolecular oxo−hydroxy phototautomerism driven by repulsive πσ* state. J. Phys. Chem. A 112, 13655–13661 (2008). https://doi.org/10.1021/jp8070986

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the high-performance computing center MésoLUM managed by ISMO (UMR8214) and LPGP (UMR8578), University Paris-Saclay (France). This work was supported by the RTRA Triangle de la Physique (2013-0436T REACMAQ). It benefited from the French-Lithuanian PHC GILIBERT program (42125XF and S-LZ-19−1 from RCL) and the French-Cuban PHC Carlos Finlay program (41805NA).

Author information

Authors and Affiliations

Authors

Contributions

CC, MC, JC and AGQ contributed to the study’s conception and design. All authors were involved in material preparation, data collection, and analysis. The first draft of the manuscript was written by AGQ, and all authors contributed to the production of subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alejandro Gutiérrez-Quintanilla or Claudine Crépin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3641 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Quintanilla, A., Chevalier, M., Platakyté, R. et al. Revisiting photoisomerization in fluorinated analogues of acetylacetone trapped in cryogenic matrices. Eur. Phys. J. D 77, 158 (2023). https://doi.org/10.1140/epjd/s10053-023-00727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00727-0

Navigation