Skip to main content

EPR Studies of Radical Ions Produced by Radiolysis of Fluorinated Hydrocarbons and Related Compounds in Solid Media

  • Chapter
  • First Online:
Applications of EPR in Radiation Research

Abstract

CW-EPR spectroscopic studies on the radical ions of small fluorinated hydrocarbons and related compounds are reviewed. The radical ions were generated and stabilized in low temperature solid media by ionizing radiation. Structures, dynamics and reactions are discussed based on the EPR hyperfine (hf) and g-tensors compared with the quantum chemical computations for the radical anions of perfluorocycloalkanes c-CnF2n (n: 3–5), perfluoroalkenes CnF2n−2 (n: 2–5), and related compounds, and for the radical cations of mono- and di-haloalkanes, [H(CH2)nX]+ and [X(CH2)nX]+ (X: Cl, Br; n < 10), fluorinated ethylenes and benzenes, and halogen-substituted dimethylethers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaiser ET, Kevan L (eds) (1968) Radical ions. Interscience Publishers, New York

    Google Scholar 

  2. Lund A, Shiotani M (eds) (1991) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht

    Google Scholar 

  3. Shiotani M, Yoshida H (1991) ESR of radical ions. In: Tabata Y (ed) CRC handbook of radiation chemistry. CRC, Boca Raton, pp 440–467

    Google Scholar 

  4. Lund A, Shiotani M (eds) (2003) EPR of free radicals in solids. Kluwer, Dordrecht

    Google Scholar 

  5. Lund A, Shiotani M, Shimada (2011) Principles and applications of ESR spectroscopy. Springer, Dordrecht, pp 211–271

    Google Scholar 

  6. Lund A, Shiotani M (eds) (2013) EPR of Free radicals in solids I: trends in method and applications, 2nd ed. Springer, Dordrecht

    Google Scholar 

  7. Lund A, Shiotani M (eds) (2013) EPR of Free radicals in solids II: trends in method and applications, 2nd ed. Springer, Dordrecht

    Google Scholar 

  8. Shiotani M (1987) ESR studies of radical cations in solid matrixes. Magn Reson Rev 12:333–381

    CAS  Google Scholar 

  9. Atkins PW, Symons MCR (1967) The structure of inorganic radicals. Elsevier, Amsterdam

    Google Scholar 

  10. Hudson A, Root K (1971) Halogen hyperfine interactions. In: Waugh J (ed) Advances in magnetic resonance, vol 5. Academic Press, New York, pp 1–63

    Google Scholar 

  11. Barnes AJ (ed) (1981) Matrix-isolation spectroscopy. NATO advanced study institutes series. C 76, Reidel, Dordrecht

    Google Scholar 

  12. Dunkin IR (1989) Matrix-isolation techniques: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  13. Hasegawa A, Shiotani M, Williams F (1978) Electron spin resonance studies of electron attachment to fluorocarbons and related compounds. Faraday Discuss Chem Soc 63(Radiation effects on liquids and solids):157–174

    Google Scholar 

  14. Lund A, Lindgren M, Lunell S, Maruani J (1989) Hydrocarbon radical cations in condensed phases. In: Maruani J (ed) Molecules in physics, chemistry and biology. Topics in molecular organization and engineering, vol 3. Springer, New York, pp 259–300

    Google Scholar 

  15. Shiotani M (1991) ESR detection of radicals trapped in solid. In: Tabata Y (ed) CRC handbook of radiation chemistry. CRC, Boca Raton, pp 139–144

    Google Scholar 

  16. Shiotani M (1991) ESR spectra of free radicals generated by ionizing radiations. In: Tabata Y (ed) CRC Handbook of radiation chemistry. CRC, Boca Raton, pp 544–567

    Google Scholar 

  17. Lindgren M, Shiotani M (1991) ESR studies of radical cations of cycloalkanes and saturated heterocycles. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht, pp 125–150

    Google Scholar 

  18. Shiotani M, Lund A (1991) Deuterium labeling studies of cation radicals. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht, pp 151–176

    Google Scholar 

  19. Hasegawa A (1991) Radical anions in disordered matrices. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht

    Google Scholar 

  20. Shiotani M, Komaguchi K (2003) Quantum effects in isotopically labeled radicals at low temperatures. In: Lund A, Shiotani M (eds) EPR of free radicals in solids. Kluwer, Dordrecht, pp 153–195

    Google Scholar 

  21. Shiotani M, Komaguchi K (2012) Deuterium labeling studies and quantum effects of radicals in solids. In: Lund A, Shiotani M (eds) EPR of free radicals in solids, 2nd ed. I. Springer, Dordrecht, pp 171–221

    Google Scholar 

  22. Morton JR, Preston KF (1977) Magnetic properties of free radicals. In: Landolt-Börnstein, Group II molecules and radicals. vol 9, Part a–d. Springer, Berlin

    Google Scholar 

  23. Muto H (1991) Trapped anions on organic crystals. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht, pp 337–360

    Google Scholar 

  24. Shida T, Nosaka Y, Kato T (1978) Electronic absorption spectra of some cation radicals as compared with ultraviolet photoelectron spectra. J Phys Chem 82:695–698

    CAS  Google Scholar 

  25. Shiotani M, Lindgren M (1994) Radicals on surfaces formed by ionizing radiation. In: Lund A, Rhodes CJ (eds) Radicals on surfaces. Kluwer, Dordrecht, pp 179–199

    Google Scholar 

  26. Knight LB Jr, Steadman J (1982) An experimental procedure for ESR studies of rare gas matrix isolated molecular cation radicals: 12CO + , 13CO + , 14NH3  + , and 15NH3  + . J Chem Phys 77:1750–1756

    CAS  Google Scholar 

  27. Knight LB Jr, Steadman J (1983) ESR investigations of H2O + , HDO + , D2O + , and H2 17O + isolated in neon matrices at 4 K. J Chem Phys 78:5940–5945

    CAS  Google Scholar 

  28. Knight LB Jr, Steadman J, Feller D, Davidson ER (1984) Experimental evidence for a C2v (2B1) ground-state structure of the methane cation radical: ESR and ab initio CI investigations of methane cation radicals (CH4  + and CD2H2  + ) in neon matrixes at 4 K. J Am Chem Soc 106:3700–3701

    CAS  Google Scholar 

  29. Knight LB Jr (1991) Generation and study of inorganic cations in rare gas matrices by electron spin resonance. In Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht, Chapter I.3

    Google Scholar 

  30. Knight LB Jr, King GM, Petty JT, Matsushita M, Momose T, Shida T (1995) Electron spin resonance studies of the methane radical cations (12,13CH4  + , 12,13CDH3  + , 12CD2H2  + , 12CD3H + , 12CD4  + ) in solid neon matrices between 2.5 and 11 K: analysis of tunneling. J Chem Phys 103:3377–3385

    CAS  Google Scholar 

  31. Rajbenbach LA (1966) Nondissociative electron attachment reactions in γ-radiolysis of solutions of cyclic perfluorocarbons in alkanes. J Am Chem Soc 88:4275–4277

    CAS  Google Scholar 

  32. Rajbenbach LA, Kaldor U (1967) Yield of scavengeable hydrogen atoms, electrons, and positive charges in the radiolysis of liquid hexane. J Chem Phys 47:242–247

    CAS  Google Scholar 

  33. Sagert NH (1968) γ-Radiolysis of cyclohexane with electron scavengers. III. Perfluorocarbons as electron scavengers. Canad J Chem 46:95–99

    CAS  Google Scholar 

  34. Rajbenbach LA (1969) Radiolysis of solutions of perfluorocarbons in hexane. J Phys Chem 73:356–360

    CAS  Google Scholar 

  35. Asundi RK, Craggs JD (1964) Electron capture and ionization phenomena in SF6 and C7F14. Proc Phys Soc 83:611–618

    CAS  Google Scholar 

  36. Mahan BH, Yong CE (1966) Electron capture and ionization phenomena in SF6 and C7F14. J Chem Phys 44:2192–2196

    CAS  Google Scholar 

  37. Fessenden RW, Bansal KM (1970) Direct observation of electron disappearance in pulse irradiated fluorocarbon gases. J Chem Phys 53:3468–3473

    CAS  Google Scholar 

  38. Bansal KM, Fessenden RW (1973) Electron disappearance in pulse irradiated fluorocarbon gases. J Chem Phys 59:1760–1768

    CAS  Google Scholar 

  39. Naff WT, Cooper CD, Compton RN (1968) Transient negative-ion states in alicyclic and aromatic fluorocarbon molecules. J Chem Phys 49:2784–2788

    CAS  Google Scholar 

  40. Davis FJ, Compton RN, Nelson DR (1973) Thermal energy electron attachment rate constants for some polyatomic molecules. J Chem Phys 59:2324–2329

    CAS  Google Scholar 

  41. Christophorou LG, McCorkle DL, Pittman D (1974) Attachment of slow (< 1 eV) electron to molecular oxygen in very high pressures of nitrogen, ethylene, and ethane. J Chem Phys 60:1183–1184

    CAS  Google Scholar 

  42. Green SW, Slinn DSL, Simpson RNF, Woytek AJ (1994) In: Banks RE, Smart BE, Tatlow JC (eds) Organofluorine chemistry: principles and commercial applications. Plenum, NY, pp 1–89

    Google Scholar 

  43. Barthe-Rosa LP, Gladysz JA (1999) Chemistry in fluorous media: a user’s guide to practical considerations in the application of fluorous catalysts and reagents. Coord Chem Rev 190:587–605

    Google Scholar 

  44. Takahashi K, Ithoh A, Nakamura T, Tachibana K (2000) Radical kinetics for polymer film deposition in fluorocarbon (C4F8, C3F6 and C5F8) plasmas. Thin Solid Films 374:303–310

    CAS  Google Scholar 

  45. Tachi S (2003) Impact of plasma processing on integrated circuit technology migration: from 1 μm to 100 nm and beyond. J Vac Sci Technol A21:S131–S138

    Google Scholar 

  46. Hiraoka K, Takao K, Iino T, Nakagawa F, Suyama H, Mizuno T, Yamabe S (2002) Gas-phase ion-molecule reactions in C3F6. J Phys Chem A 106:603–611

    CAS  Google Scholar 

  47. Hiraoka K, Fujita K, Ishida M, Okada K, Hizumi A, Wada A, Yamabe S, Tsuchida N (2005) Gas-phase ion/molecule reactions in C5F8. J Phys Chem A 109:1049–1056

    CAS  Google Scholar 

  48. Fessenden RW (1962) Second-order splittings in the electron spin resonance (E.S.R) spectra of organic radicals. J Chem Phys 37:747–750

    CAS  Google Scholar 

  49. Fessenden RW, Schuler RH (1965) E.S.R. spectra and structure of the fluorinated methyl radicals. J Chem Phys 43:2704–2714

    CAS  Google Scholar 

  50. Fessenden RW, Schuler RH (1963) Electron spin resonance studies of transient alkyl radicals. J Chem Phys 39:2147–2195

    CAS  Google Scholar 

  51. Iwasaki M (1971) Electron spin resonance of irradiated organic fluorine compounds. Fluorine Chem Rev 5:1–56

    CAS  Google Scholar 

  52. Iwasaki M (1971) Origin of the ESR hyperfine anisotropy and the cos2θ rule of the β-fluorine couplings. Mol Phys 20:503–512

    CAS  Google Scholar 

  53. Chachaty C, Forchioni A, Shiotani M (1969) Résonance paramagnéique électronique de radicaux cycliques perfluorés. C R Acad Sci Paris Ser C 268:1181–1184

    CAS  Google Scholar 

  54. Chachaty C, Forchioni A, Shiotani M (1970) Etude par résonance paramagnétique électronique de la radiolyse en phase solid composé cyclique perfluorés. Can J Chem 48:435–446

    CAS  Google Scholar 

  55. Chachaty C, Shiotani M (1971) Résonance paramagnétique électronique de radicaux aliphatiques fluorés. J Chim Phys 66:300–310

    Google Scholar 

  56. Edlund O, Lund A, Shiotani M, Sohma J, Thuomas KA (1976) Theory for the anisotropic hyperfine coupling with fluorine: the perfluoromethyl radical. Mol Phys 32:49–69

    CAS  Google Scholar 

  57. Maruani J, McDowell CA, Nakajima H, Raghunathan P (1968) The electron spin resonance spectra of randomly oriented trifluoromethyl radicals in rare-gas matrixes at low temperatures. Mol Phys 14:349–366

    CAS  Google Scholar 

  58. Maruani J, Coope JAR, McDowell CA (1970) Detailed analysis of the singularities and origin of the ‘extra’ lines in the ESR spectrum of the CF3 radical in a polycrystalline matrix. Mol Phys 18:165–176

    CAS  Google Scholar 

  59. Shiotani M, Williams F (1976) Electron spin resonance spectrum of the perfluorocyclobutane radical anion. J Am Chem Soc 98:4006–4008

    CAS  Google Scholar 

  60. Shiotani M, Lund A, Lunell S, Williams F (2007) Structures of the hexafluorocyclopropane, octafluorocyclobutane and decafluorocyclopentane radical anions probed by experimental and computational studies of anisotropic ESR spectra. J Phys Chem A 111:321–338

    CAS  Google Scholar 

  61. Aguirregabiria J (2013) Ejs Symmetric Top Model. http://www.opensourcephysics.org/items/detail.cfm?ID=7872

    Google Scholar 

  62. Shimizu Y, Kumada T, Kumagai J (2008) Electron spin resonance spectroscopy of molecules in large precessional motion: a case of H6  + and H4D2  + in solid parahydrogen. J Mag Res 19:76–80

    Google Scholar 

  63. Shiotani M, Iimura D, Murabayashi S, Sohma J (1975) Dissociative electron capture of fluorinated acetic acids. Int J Radiat Phys Chem 7:265–274

    CAS  Google Scholar 

  64. Shiotani M, Sohma J (1975) Dissociative electron capture in low temperature solid phase. Kagaku (Chemistry) 30:161–163

    CAS  Google Scholar 

  65. Wentworth WE, George R, Keith H (1969) Dissociative thermal electron attachment to some aliphatic chloro, bromo, iodo compounds. J Chem Phys 51:1791–1801

    CAS  Google Scholar 

  66. Sprague ED, Williams F (1971) ESR observation of methyl radical-halide ion pairs produced by dissociative electron capture in a crystalline matrix. J Chem Phys 54:5425–5427

    Google Scholar 

  67. Mishra SP, Symons MCR (1973) Unstable intermediates. Part CXXIV. Alkyl radical-halide ion adducts. J Chem Soc Perkin Trans II:391–394

    Google Scholar 

  68. Fujita Y, Katsu T, Sato M, Takahashi K (1974) Carbon-13 hyperfine splittings of normal and abnormal methyl radicals trapped on the porous Vycor glass surface. J Chem Phys 61:4307–4311

    CAS  Google Scholar 

  69. Hasegawa A, Williams F (1977) ESR spectra and structure of the CF3Cl, CF3Br, and CF3I radical anions. Chem Phys Lett 46:66–68

    CAS  Google Scholar 

  70. Muto H, Nunome K (1991) Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CCl4 radical anion in tetramethylsilane low temperature solids. J Chem Phys 94:4741–4748

    CAS  Google Scholar 

  71. Morton JR, Preston KF (1975) Etude R.P.E. des anions paramagnétiques SnH4 et SiF4 . Mol Phys 30:1213–1215

    CAS  Google Scholar 

  72. Hasegawa A, Uchimura S, Koseki K, Hayashi M (1978) ESR spectrum and structure of the SiF3Cl radical anion. Chem Phys Lett 53:337–340

    CAS  Google Scholar 

  73. Hasegawa A, Uchimura S, Hayashi M (1980) Electron paramagnetic resonance spectra of SiF3X (X = Cl, Br, I) and SiFnCl4−n− (n = 0−2) radical anions. J Mag Res 38:391–400

    CAS  Google Scholar 

  74. Toriyama K, Nunome K, Iwasaki M (1982) Structures and reactions of radical cations of some prototype alkanes in low temperature solids as studied by ESR spectroscopy. J Chem Phys 77:5891–5912

    CAS  Google Scholar 

  75. Toriyama K (1991) ESR studies of radical cations of saturatedhadrocarbons: structure, orbital debgeneracy, dynamics, and Reactions. In: Lund A, Shiotani M (eds) Radical ionic systems: properties in condensed phases. Kluwer, Dordrecht, pp 99–124

    Google Scholar 

  76. Eastland GW, Maj SP, Symons MCR, Hasegawa A, Glidewell C, Hayashi M, Wakabayashi T (1984) Radiation chemical formation of radical cations of halo alkanes and their electron spin resonance spectra and structure. J Chem Soc Perkin Trans 2:1439–1447

    Google Scholar 

  77. Symons MCR (1985) Radical cations of di-, tri-, and tetra-bromomethane formed by radiolysis: an electron spin resonance study. J Chem Res 8:256–257

    Google Scholar 

  78. Hasegawa A, Symons MCR, Shiotani M (1989) Electron spin resonance spectra and structure of the radical cations of 1,3-dichloropropane and other dichloroalkanes. J Chem Soc Perkin Trans II:147–151

    Google Scholar 

  79. Hasegawa A, Symons MCR, Shiotani M (1989) Electron spin resonance spectra and structure of the radical cations of dibromoalkanes and monobromoalkanes. J Chem Soc Perkin Trans II:657–665

    Google Scholar 

  80. Muto H, Nunome K, Iwasak M (1989) An electron spin resonance study of the structure of the tetrachloromethane radical cation (CCl4  + ) in carbon tetrachloride γ-irradiated at low temperatures by powder and single crystal analyses. J Chem Phys 90:6827–6832

    CAS  Google Scholar 

  81. Knight LB Jr, Gregory BW, Hill DW, Arrington CA, Momose T, Shida T (1991) Electron spin resonance studies of 12CH3F + , 13CH3F + , and 12CH2DF + in neon matrices at 4 K: comparison with theoretical calculations. J Chem Phys 94:67–79

    CAS  Google Scholar 

  82. Komaguchi K, Sakurai H, Shiotani M, Hasegawa A (2001) The ESR spectra, electronic structure, and thermal reactivity of fluoroethane cations. Bull Chem Soc Jap 74:2319–2324

    CAS  Google Scholar 

  83. Gillbro T, Kerr CML, Williams F (1974) Electron spin resonance identification of the dimer radical cation (MeO)3PP(OMe)3  + in γ-irradiated trimethyl phosphite from second-order hyperfine structure. Mol Phys 28:1225–1232

    CAS  Google Scholar 

  84. Hasegawa A, McConnachie GDG, Symons MCR (1984) Preparation and structure of certain phosphorus-centred radical cations: an electron spin resonance study. J Chem Soc Faraday Trans I 80:1005–1016

    CAS  Google Scholar 

  85. Nelson DJ, Petersen RL, Symons MCR (1977) Unstable intermediates. Part 178. The structure of intermediates formed in the radiolysis of thiols. J Chem Soc Perkin Trans II:2005–2015

    Google Scholar 

  86. Petersen RL, Nelson DJ, Symons MCR (1978) Unstable intermediates. Part 179. Electron spin resonance studies of radicals formed in irradiated organic sulphides and disulphides. J Chem Soc Perkin Trans II:225–231

    Google Scholar 

  87. Rao DNO, Svmons MCR, Wren BW (1984) Radical cations of organic sulphides and disulphides formed by radiolysis: an electron spin resonance study. J Chem Soc Pekin Trans II:1681–1687

    Google Scholar 

  88. Qin XZ, Meng O, Williams F (1987) ESR studies of the thietane and thiirane radical cations in freon matrixes. Evidence for ethylene molecule extrusion from a σ* thiirane dimer radical cation [C2H4S–SC2H4  + ]. J Am Chem Soc 109:6778–6788

    CAS  Google Scholar 

  89. Symons MCR (1979) Electron spin resonance studies of radicals derived from dithionate, tetrathionate, and thiosulphate anions. J Chem Soc Dalton Trans 1979:1468–1472

    Google Scholar 

  90. Mishra SP, Symons MCR (1975) Unstable intermediates. Part CLIX. Dihalide anions and related species as products in the radiolysis of organic halides. J Chem Soc Perkin Trans II:1492–1498

    Google Scholar 

  91. Sevilla MD, Becker D, Sevilla CL, Swarts S (1984) An ESR investigation of ester π-cation radicals in a Freon matrix at low temperatures: evidence for unusual barriers to methyl group rotation and intramolecular bonding. J Phys Chem 88:1701–1706

    CAS  Google Scholar 

  92. Sevilla MD, Becker D, Sevilla CL, Swarts S (1985) Reactions of the methyl and ethyl formate cation radicals: deuterium isotope effects. J Phys Chem 89:633–636

    CAS  Google Scholar 

  93. Snow LD, Williams F (1983) An ESR study of the acetaldehyde radical cation in freon matrixes: evidence for halogen superhyperfine interaction. Chem Phys Lett 100:198–202

    CAS  Google Scholar 

  94. Clark T, Hasegawa A, Symons MCR (1985) Matrix interactions for radical cations: theoretical and experimental results for the trichlorofluoromethane matrix illustrated by 19F coupling for Me2Se + radical cations. Chem Phys Lett 116:79–82

    CAS  Google Scholar 

  95. Becker D, Plante K, Sevilla MD (1983) Methyl formate cation radical: electron spin resonance evidence for a σ* radical formed by strong matrix-solute cation interaction in frozen fluorotrichloromethane solutions. J Phys Chem 87:1648–1652

    CAS  Google Scholar 

  96. Hasegawa A, Symons MCR (1983) Electron spin resonance spectra of tetrafluoroethylene radical cation. J Chem Soc Faraday Trans 1(79):93–97

    Google Scholar 

  97. Shiotani M, Nagata Y, Sohma J (1984) Electron spin resonance studies on propylene radical cation. J Phys Chem 88:4078–4082

    CAS  Google Scholar 

  98. Fujisawa J, Sato S, Shimokoshi K, Shida T (1985) Environment effects on the ESR spectrum of the cation radical of dimethylketene in low temperature matrixes. Bull Chem Soc Jap 58:1267–1272

    CAS  Google Scholar 

  99. Maj P, Hasegawa A, Symons MCR (1983) Radical cations of halobenzenes: an electron spin resonance study. J Chem Soc Faraday Trans 1(79):1931–1938

    Google Scholar 

  100. Symons MCR, Hasegawa A, Maj P (1982) ESR spectra of matrix-isolated bromobenzene cations formed by radiolysis. Chem Phys Lett 8:254–257

    Google Scholar 

  101. McNeil RI, Shiotani M, Williams F, Yim MB (1977) The isotropic and anisotropic ESR spectra of the tetrafluoroethylene radical anion. Chem Phys Lett 51:433–437

    CAS  Google Scholar 

  102. McNeil RI, Shiotani M, Williams F, Yim MB (1977) Novel cycloaddition of tetrafluoroethylene to the tetrafluoroethylene radical anion at 95 K: direct observation by EPR studies. Chem Phys Lett 51:438–441

    CAS  Google Scholar 

  103. Paddon-Row MN, Rondan NG, Houk KN, Jordan KD (1982) Geometries of the radical anions of ethylene, fluoroethylene, 1,1-difluoroethylene, and tetrafluoroethylene. J Am Chem Soc 104:1143–1145

    CAS  Google Scholar 

  104. Schastnev PV, Shchegoleva LN (1995) Molecular distortions in ions and excited states. CRC, Boca Raton, Chapter 3

    Google Scholar 

  105. Hasegawa A, Symons MCR (1983) Structure of the tetrafluoroethylene radical anion and interpretations of its electron spin resonance spectra. J Chem Soc Faraday Trans I 79:1565–1571

    CAS  Google Scholar 

  106. Shiotani M, Person P, Lunell S, Lund A, Williams F (2006) Structures of tetrafluorocyclopropene, hexafluorocyclobutene, octafluorocyclopentene and related perfluoroalkene radical anions revealed by ESR spectroscopic and computational studies. J Phys Chem A 110:6307–6323

    CAS  Google Scholar 

  107. McNeil RI, Williams F, Yim MB (1979) EPR Spectra and structure of the chlorotrifluoroethylene and bromotrifluoroethylene radical anions. Chem Phys Lett 61:293–298

    CAS  Google Scholar 

  108. Itagaki Y, Shiotani M (1999) Photoinduced isomerization of trans-acetylene radical anion to vinylidene radical anion in 2-methyltetrahydrofuran. J Phys Chem A 103:5189–5195

    CAS  Google Scholar 

  109. Matsuura K, Muto H (1993) Electronic structure of acetylene radical anion with a transbent form. J Phys Chem 97:8842–8844

    Google Scholar 

  110. Hasegawa A, Symons MCR (1983) Electron spin resonance spectra of tetrafluoroethylene radical cation. J Chem Soc Faraday Trans I 79:93–97

    CAS  Google Scholar 

  111. Ohta K, Shiotani M, Sohma J (1987) ESR spectra and structures of radical cations of chlorotrifluoroethylene and bromotrifluoroethylene. Chem Phys Lett 140:148–153

    Google Scholar 

  112. Carrington A, McLachlan (1967) Introduction to magnetic resonance. Harper & Row, New York

    Google Scholar 

  113. Itagaki Y, Shiotani M, Hasegawa A, Kawazoe H (1998) EPR spectra and structure of the radical cations of fluorinated ethylenes and propenes. Bull Chem Soc Jpn 71:2547–2554

    CAS  Google Scholar 

  114. Li WZ, Huang MB (2003) Equilibrium structures and hyperfine parameters of some fluorinated hydrocarbon radical cations: a DFT BLYP and MP2 study. J Mol Struc (Theochem) 639:71–79

    Google Scholar 

  115. Lunell S, Huang MB (1990) The hyperfine structure in the ethylene radical cation: an accurate CI study. Chem Phys Lett 168:63–68

    CAS  Google Scholar 

  116. Shiotani M, Kawazoe H, Sohma J (1984) The radical cation of hexafluoro-1,3-butadiene: an ESR study. Chem Phys Lett 111:254–257

    CAS  Google Scholar 

  117. Xiao HY, Cao J, Liu YJ, Fang WH, Tachikawa H, Shiotani M (2007) Structures and cis-to-trans photoisomerization of hexafluoro-1,3-butadiene radical cation: electron spin resonance (ESR) and computational studies. J Phys Chem A 111:5192–5200

    CAS  Google Scholar 

  118. Shiotani M, Ohta K, Nagata Y, Sohma J (1985) Novel cycloaddition of dimethylacetylene to the dimethylacetylene radical cation: direct observation by ESR. J Am Chem Soc 107:2562–2564

    CAS  Google Scholar 

  119. Chang CH, Andreassen AL, Hbaiter SHS (1971) Molecular structure of perfluoro-2-butyne and perfluoro-1,3-butadiene as studied by gas phase electron diffraction. J Org Chem 36:920–923

    CAS  Google Scholar 

  120. Aston JG, Sasz G, Woolley HW, Brickwedde FG (1946) Thermodynamic properties of gaseous 1,3-butadiene and the normal butenes above 25 °C equilibria in the system 1,3-butadiene, n-butenes, and n-butane. J Chem Phys 14:67–79

    CAS  Google Scholar 

  121. Itagaki Y, Yanagida N, Shiotani M (2002) Formation and structure of dimer radical cations of fluorinated benzenes in solid matrices. Phys Chem Chem Phys 4:5982–5987

    CAS  Google Scholar 

  122. Slinkin AA, Kucherov AV, Kondrat’ev DA, Bondarenko TN, Rubinstein AM, Minachev KM (1986) Formation of radicals and catalytic activity of pentasil-type zeolites in unsaturated hydrocarbon conversions: part 1. Radical formation upon olefin adsorption. J Mole Cat 35:97–105

    CAS  Google Scholar 

  123. Kucherov AV, Slinkin AA, Kondratyev DA, Bondarenko TN, Rubinstein AM, Minachev KM (1986) Formation of radicals and catalytic activity of H-ZSM-5-type zeolites in unsaturated hydrocarbon conversions: part 2. Radical formation upon adsorption of aromatic compounds. J Mol Cat 37:107–115

    CAS  Google Scholar 

  124. Volodin AM, Bolshov VA, Panov GI (1994) The Role of Surface α-Oxygen in Formation of Cation Radicals at Benzene Adsorption on ZSM-5 Zeolite. J Phys Chem 98:7548–7550

    CAS  Google Scholar 

  125. Bolshov VA, Volodin AM, Zhidomirov GM, Shubin AA, Bedilo AF (1994) Radical intermediates in the photoinduced formation of benzene cation-radicals over H-ZSM-5 zeolites. J Phys Chem 98:7551–7554

    CAS  Google Scholar 

  126. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states I: orbital degeneracy. Proc R Soc Lond A 161:220–235

    CAS  Google Scholar 

  127. Dewar MJS, Yamaguchi Y, Doraisways S, Sharma SD, Such SH (1979) Structures and properties of fluorinated pyridines; assignment of the two homo’s of pyridine. Chem Phys 41:21–33 (and references cited therein)

    CAS  Google Scholar 

  128. von Nissen W, Diercksen GHF, Cederbaum S (1975) The electronic structure of molecules by a many-body approach: II. Ionization potentials one-electron properties of pyridine and phosphoridine. Chem Phys 10:345–360

    Google Scholar 

  129. Berg JO, Parker DH, El-Sayed MA (1978) Assignment of the lowest ionization potentials in pyridine and pyrazine by multiphoton ionization spectroscopy. Chem Phys Lett 56:411–416

    CAS  Google Scholar 

  130. Duke CB, Yip KL, Ceaser GP, Potts AW, Streets DG (1977) Electronic structure of the fluorobenzenes, ethylene, and tetrafluoroethylene. J Chem Phys 66:256–268

    CAS  Google Scholar 

  131. Frazier JR, Christophorou LG, Carter JG, Schweinler HC (1978) Low-energy electron interactions with organic molecules: negative ion states of fluorobenzenes. J Chem Phys 69:3807–3818

    CAS  Google Scholar 

  132. Rabalais JW (1977) Principles of ultraviolet photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  133. Turner DW, Baker C, Baker AD, Brundle CR (1970) Molecular photoelectron spectroscoy. Wiley, New York

    Google Scholar 

  134. Brundle CR, Robin MB, Kuebler NA, Basch H (1972) Perfluoro effect in photoelectron spectroscopy I: nonaromatic molecules. J Am Chem Soc 94:1451–1465

    CAS  Google Scholar 

  135. Brundle CR, Robin MB, Kuebler NA (1972) Perfluoro effect in photoelectron spectroscopy II: aromatic molecules. J Am Chem Soc 94:1466–1475

    CAS  Google Scholar 

  136. Hasegawa A, Shiotani M, Hama Y (1994) ESR Studies of Jahn-Teller distortion in the radical anions and cations of hexafluorobenzene. J Phys Chem 98:1834–1839

    CAS  Google Scholar 

  137. Hasegawa A, Itagaki Y, Shiotani M (1997) EPR spectra and structure of the radical cations of fluorinated benzenes. J Chem Soc Perkin Trans 2:1625–1631

    Google Scholar 

  138. Itagaki Y, Lund A, Shiotani M, Hasegawa A (1999) Substitution effects on the structure of benzene radical cations. Trends Chem Phys 7:277–300

    CAS  Google Scholar 

  139. Williams LF, Yim MB, Wood DE (1973) Electron paramagnetic resonance of free radicals in adamantane matrix. VI. Hexaflurorbenzene anion radical. J Am Chem Soc 95:6475–6477

    CAS  Google Scholar 

  140. Yim MB, Wood DE (1976) Free radicals in an adamantane matrix. XII. EPR and INDO study of σ*-π* crossover in fluorinated benzene anions. J Amer Chem Soc 98:2053–2059

    CAS  Google Scholar 

  141. Symons MCR, Selby RC, Simth IG, Bratt SW (1977) ESR studies on the structure of C6F6 anions. Chem Phys Lett 48:100–102

    CAS  Google Scholar 

  142. Wang JT, Williams F (1980) Carbon-13 hyperfine interaction in the hexafluorobenzene radical anion. Chem Phys Lett 71:471–475

    CAS  Google Scholar 

  143. Anisimov OA Grigoryants VM, Molin YN (1980) Optical detection of the ESR spectrum of hexafluorobenzene anion radicals in squalane at room temperature. Chem Phys Lett 74:15–18

    Google Scholar 

  144. Shchegoleva LN, Bilkis II, Schastnev PV (1983) Geometrical and electronic structure of fluoro-substituted benzene radical anions based on quantum chemical analysis of hyperfine interactions. Chem Phys 82:343–353

    CAS  Google Scholar 

  145. Hou XJ, Huang MB (2003) Structure of the hexafluorobenzene anion. J Mol Struc (Theochem) 638:209–214

    CAS  Google Scholar 

  146. Barlukova MM, Beregovaya IV, Vysotsky VP, Shchegoleva LN, Bagryansky VA, Molin YN (2005) Intramolecular dynamics of 1,2,3-trifluorobenzene radical anions as studied by OD ESR and quantum-chemical methods. J Phys Chem A 109:4404–4409

    CAS  Google Scholar 

  147. Tuttle TR Jr, Weissmn SI (1958) Electron spin resonance spectra of the anions of benzene, toluene and the xylenes. J Am Chem Soc 80:5342–5344

    CAS  Google Scholar 

  148. Lawler RG, Bolton JR, Fraenkel GK, Brown TH (1964) Orbital degeneracy and the electron spin resonance spectrum of the benzene-1-d negative Ion. J Am Chem Soc 86:520–521

    CAS  Google Scholar 

  149. Lawler RG, Fraenkel (1968) Effects of deuterium substitution on the ESR spectrum of the benzene negative ion. J Chem Phys 49:1126–1139

    CAS  Google Scholar 

  150. Edlund O, Kinell PO, Lund A, Shimizu A (1967) Electron spin resonance spectra of monomeric and dimeric cations of benzene. J Chem Phys 46:3679–3680

    CAS  Google Scholar 

  151. Edlund O, Kinell PO, Lund A, Shimizu A (1968) Electron spin resonance study of energy transfer in the γ-irradiated system benzene-silica gel. In: Gould RF (ed) Advances in chemistry series. American Chemical Society Publications, 82:311–326

    Google Scholar 

  152. Nagai S, Ohnishi S, Nitta I (1971) ESR study of adsorbed monomer and dimer cation radicals of benzene and its methyl derivatives. Bull Chem Soc Jpn 44:1230–1233

    CAS  Google Scholar 

  153. Raghavachari K, Haddon RC, Miller TA, Bondybey VE (1983) Theoretical study of Jahn-Teller distortions in C6H6  + and C6F6  + . J Chem Phys 79:1387–1395

    CAS  Google Scholar 

  154. Lindner R, Müller-Dethlefs K, Wedum E, Haber K, Grant ER (1996) On the shape of C6H6  + . Science 271:1698–1702

    CAS  Google Scholar 

  155. Bowers KW (1968) Orbital degeneracy in benzene and substituent effects. In: Kaiser ET, Kevan L (eds) Radical ions. Interscience Publishers, New York, pp 211–244

    Google Scholar 

  156. Komatsu T, Lund A, Kinell PO (1972) Electron spin resonance studies on irradiated heterogeneous systems VIII: radical cation formation from toluene. J Phys Chem 76:1721–1726

    CAS  Google Scholar 

  157. Komatsu T, Lund A (1972) Electron spin resonance studies on irradiated heterogeneous systems IX: anisotropy of the g factor and the hyperfine coupling constant of the benzene cation in the adsorbed state. J Phys Chem 76:1727–1728

    CAS  Google Scholar 

  158. Tabata M, Lund A (1983) ESR of cation radicals of methyl-substituted benzenes in a trichlorotrifluoroethane matrix. Zeitschrift fuer Naturforschung, Teil A: Physik, Physikalische Chemie. Kosmophysi 38A:428–433

    CAS  Google Scholar 

  159. Iwasaki M, Toriyama K, Nunome K (1983) ESR evidence for the static distortion of 2E1 g benzene cations giving 2B2 g with D2h symmetry in low temperature matrixes. J Chem Soc Chem Commun 1983:320–322

    Google Scholar 

  160. Huang MB, Lunell S (1990) Accurate configuration interaction calculations of the hyperfine interactions in the benzene cation. J Chem Phys 92:6081–6083

    CAS  Google Scholar 

  161. Feldman VI, Suknov FF, Orlov AY (1999) An ESR study of benzene radical cation in an argon matrix: evidence for favourable stabilization of 2B1 g rather than 2B2 g state. Chem Phys Lett 300:713–718

    CAS  Google Scholar 

  162. Feldman VI, Suknov FF, Orlov AY, Kadam RM, Itagaki Y, Lund A (2000) Effect of matrix and substituent on the electronic structure of trapped benzene radical cations. Phys Chem Chem Phys 2(1):29–35

    CAS  Google Scholar 

  163. Erickson R, Lund A, Lindgren M (1995) Analysis of powder EPR and ENDOR spectra of the biphenyl radical cation on H-ZSM-5 zeolite, silica gel and in CFCl3. Chem Phys 193:89–99

    CAS  Google Scholar 

  164. Kadam RM, Erickson R, Komaguchi K, Shiotani M, Lund A (1998) ENDOR and EPR studies of benzene radical cations in halocarbon matrices: the Jahn-Teller distortion of the monomer and geometry of the dimer cation. Chem Phys Lett 290:371–378

    CAS  Google Scholar 

  165. Kadam RM, Itagaki Y, Benetis NP, Lund A, Erickson R, Hubar M, Hilczer W (1999) An EPR, ENDOR and ESEEM study of the benzene radical cation in CFCl3 matrix: isotopic substitution effects on structure and dynamics. Phys Chem Chem Phys 1:4967–4973

    CAS  Google Scholar 

  166. Toriyama K, Okazaki M (1999) Benzene cation radical in mesoporous silicate: EPR detection of unusually stabilized Jahn-Teller distortion. Phys Chem Chem Phys 1:2607–2612

    CAS  Google Scholar 

  167. Xiao HY, Cao J, Liu YJ, Fang WH, Liu RZ, Shiotani M (2008) Hyperfine coupling constants of fluorinated benzene radical cations: a DFT B3LYP and MP2 study. J Theo Comp Chem 7:879–887

    CAS  Google Scholar 

  168. Shiotani M, Kawazoe H, Sohma J (1984) ESR studies of fluorinated pyridine radical cations. J Phys Chem 88:2220–2224

    CAS  Google Scholar 

  169. Shida T, Kato T (1979) ESR and optical studies on the cation radical of pyridine in a γ-irradiated rigid matrix at low temperatures. Chem Phys Lett 68:106–110

    CAS  Google Scholar 

  170. Erickson R, Benetis NP, Lund A, Lindgren M (1997) Radical cation of naphthalene on H-ZSM-5 zeolite and in CFCl3 Matrix. A theoretical and experimental EPR, ENDOR, and ESEEM Study. J Phys Chem 101:2390–2396

    CAS  Google Scholar 

  171. Kadam RM, Itagaki Y, Erickson R, Lund A (1999) ENDOR and ESR studies of radical cations of methyl-substituted benzene in halocarbon matrixes. J Phys Chem A 103:1480–1486

    CAS  Google Scholar 

  172. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    CAS  Google Scholar 

  173. Shiotani M, Nagata Y, Tasaki M, Sohma J, Shida T (1983) Electron spin resonance studies on radical cations of five-membered heteroaromatics: furan, thiophene, pyrrole, and related compounds. J Phys Chem 87:1170–1174

    CAS  Google Scholar 

  174. Shiotani M, Ohta K, Nagata Y, Sohma J (1985) Novel cycloaddition of dimethylacetylene to the dimethylacetylene radical cation: direct observation by ESR. J Am Chem Soc 107:2562–2564

    CAS  Google Scholar 

  175. Ohta K, Shiotani M, Sohma J, Hasegawa A, Symons MCR (1987) Formation of methylpropargyl radicals from tetramethylcyclobutadiene radical cations: an ESR study. Chem Phys Lett 136:465–470

    Google Scholar 

  176. Komaguchi K, Nomura N, Shiotani M, Lund A, Jansson M, Lunell S (2006) ESR and theoretical studies of trimer radical cations of coronene. Spectrochimica Acta A63:76–84

    Google Scholar 

  177. Edlund O, Kinell PO, Lund A, Shimizu A (1967) Electron spin resonance spectra of monomeric and dimeric cations of benzene. J Chem Phys 46:3679–3680

    CAS  Google Scholar 

  178. Itagaki Y, Lund A, Shiotani M, Hasegawa A (1999) Substitution effects on the structure of benzene radical cations. Trends Chem Phys 7:277–300

    CAS  Google Scholar 

  179. Itagaki Y, Benetis NP, Kadam RM, Lund A (2000) Structure of dimeric radical cations of benzene and toluene in halocarbon matrices: an EPR, ENDOR and MO study. Phys Chem Chem Phys 2:2683–2689

    CAS  Google Scholar 

  180. Tzong J, Williams F (1981) ESR detection of the dimethyl ether radical cation. J Am Chem Soc 103:6994–6996

    Google Scholar 

  181. Kubodera H, Shida T, Shimokoshi K (1981) ESR evidence for the cation radicals of tetrahydrofurans and dimethyl ether produced in a.gamma-irradiated frozen matrix of trichlorofluoromethane. J Phys Chem 85:2583–2586

    CAS  Google Scholar 

  182. Shiotani M, Isamoto N, Hayashi M, Fängström T, Lunell S (2000) Deuterium isotope effects on rotation of methyl hydrogens: a study of the dimethyl ether radical cation by ESR spectroscopy and ab initio and density functional theory. J Am Chem Soc 122:12281–12288

    CAS  Google Scholar 

  183. Itagaki Y, Wang P, Isamoto N, Shiotani M, Hasegawa A, Jansson M, Lunell S (2002) Static and dynamic structures of halogenated dimethyl ether radical cations: an ESR and MO study. Phys Chem Chem Phys 4:2524–2529

    CAS  Google Scholar 

  184. Itagaki Y, Wang P, Shiotani M, Hasegawa A (2002) ESR spectra and structure of bis-chlorinated dimethyl ether radical cation, ClCH2OCH2Cl + . Phys Chem Chem Phys 4:2530–2533

    CAS  Google Scholar 

  185. Brown JK, Sheppard N (1955) Infra-red spectroscopic studies of rotational isomerism in the polymethylene halides. Proc R Soc Lond A 231:555–574

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Shiotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing

About this chapter

Cite this chapter

Shiotani, M., Komaguchi, K. (2014). EPR Studies of Radical Ions Produced by Radiolysis of Fluorinated Hydrocarbons and Related Compounds in Solid Media. In: Lund, A., Shiotani, M. (eds) Applications of EPR in Radiation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-09216-4_3

Download citation

Publish with us

Policies and ethics