Skip to main content
Log in

Experimental study of a microsecond-pulsed cold plasma jet

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cold plasma jets at atmospheric pressure have become the standard reactors used for treatment of various biosamples and other application. The object of this experimental study is one such reactor powered by a short-pulse voltage with a rise time ≈400 ns, operating with helium gas. The main aim of the investigation was to obtain the data on the jet streamer space–time development and plasma parameters near the target. Axial and radial structure was examined along with gas temperature and electric field above the target. Results show a comparably fast streamer progression (105 m/s) with strong electric field in the period of maximum current (33 kV/cm). These characteristic features can be attributed to the fast rise of the voltage pulse.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008)

    Google Scholar 

  2. R. Brandenburg, A. Bogaerts, W. Bongers, A. Fridman, G. Fridman, B.R. Locke, V. Miller, S. Reuter, M. Schiorlin, T. Verreycken, K. Ostrikov, White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym. 16, 1–18 (2019)

    Google Scholar 

  3. J. Winter, R. Brandenburg, K.D. Weltmann, Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci, Technol. 24, 64001 (2015)

    Google Scholar 

  4. K.D. Weltmann, T. Von Woedtke, Plasma medicine—current state of research and medical application. Plasma Phys. Control. Fusion 59, 014031 (2017)

    ADS  Google Scholar 

  5. S. Reuter, T. Von Woedtke, K.D. Weltmann, The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 51, 233001 (2018)

    ADS  Google Scholar 

  6. Y. Lu, S. Wu, W. Cheng, X. Lu, Electric field measurements in an atmospheric-pressure microplasma jet using Stark polarization emission spectroscopy of helium atom. Eur. Phys. J. Spec. Top. 226, 2979–2989 (2017)

    Google Scholar 

  7. A.V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, G. Popa, Stimulation of wound healing by helium atmospheric pressure plasma treatment. J. Phys. D. Appl. Phys. 44, 105204 (2011)

    ADS  Google Scholar 

  8. M. Laroussi, X. Lu, M. Keidar, Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901 (2017)

    ADS  Google Scholar 

  9. T. Von Woedtke, S. Emmert, H.R. Metelmann, S. Rupf, K.D. Weltmann, Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys. Plasmas 27, 070601 (2020)

    Google Scholar 

  10. A. Khlyustova, C. Labay, Z. Machala, M.P. Ginebra, C. Canal, Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front.Chem. Sci. Eng. 13, 238–252 (2019)

    Google Scholar 

  11. V. Vijayarangan, A. Delalande, S. Dozias, J.M. Pouvesle, C. Pichon, E. Robert, Cold atmospheric plasma parameters investigation for efficient drug delivery in HeLa cells. IEEE Trans. Radiat. Plasma Med. Sci. 2, 109–115 (2018)

    Google Scholar 

  12. V. Vijayarangan, A. Delalande, S. Dozias, J.-M. Pouvesle, E. Robert, C. Pichon, New insights on molecular internalization and drug delivery following plasma jet exposures. Int. J. Pharm. 589, 119874 (2020)

    Google Scholar 

  13. T. Chung, A. Stancampiano, K. Sklias, K. Gazeli, F. André, S. Dozias, C. Douat, J. Pouvesle, J. Santos Sousa, É. Robert, L. Mir, Cell Electropermeabilisation enhancement by Non-Thermal-Plasma-Treated PBS. Cancers (Basel) 12, 219 (2020)

    Google Scholar 

  14. Q. Zhang, J. Zhuang, T. Von Woedtke, J.F. Kolb, J. Zhang, J. Fang, K.D. Weltmann, Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields. Appl. Phys. Lett. 105, 104103 (2014)

    ADS  Google Scholar 

  15. J.P. Boeuf, L.L. Yang, L.C. Pitchford, Dynamics of a guided streamer ('plasma bullet’) in a helium jet in air at atmospheric pressure. J. Phys. D. Appl. Phys. 46, 15201 (2013)

    Google Scholar 

  16. G.B. Sretenović, I.B. Krstić, V.V. Kovačević, B.M. Obradović, M.M. Kuraica, Spatio-temporally resolved electric field measurements in helium plasma jet. J. Phys. D Appl. Phys. 47, 102001 (2014)

    ADS  Google Scholar 

  17. G.B. Sretenović, I.B. Krstić, V.V. Kovačević, B.M. Obradović, M.M. Kuraica, The isolated head model of the plasma bullet/streamer propagation: Electric field-velocity relation. J. Phys. D. Appl. Phys. 47, 355201 (2014)

    Google Scholar 

  18. A. Sobota, O. Guaitella, G.B. Sretenović, I.B. Krstić, V.V. Kovačević, A. Obrusník, Y.N. Nguyen, L. Zajíčková, B.M. Obradović, M.M. Kuraica, Electric field measurements in a kHz-driven He jet—the influence of the gas flow speed. Plasma Sources Sci. Technol. 25, 065026 (2016)

    ADS  Google Scholar 

  19. A. Sobota, O. Guaitella, G.B. Sretenović, V.V. Kovačević, E. Slikboer, I.B. Krstić, B.M. Obradović, M.M. Kuraica, Plasma-surface interaction: Dielectric and metallic targets and their influence on the electric field profile in a kHz AC-driven He plasma jet. Plasma Sources Sci. Technol. 28, 045003 (2019)

    ADS  Google Scholar 

  20. G.B. Sretenović, P.S. Iskrenović, I.B. Krstić, V.V. Kovačević, B.M. Obradović, M.M. Kuraica, Quantitative analysis of plasma action on gas flow in a He plasma jet. Plasma Sources Sci. Technol. 27, 07LT01 (2018)

    Google Scholar 

  21. P. Viegas, E. Slikboer, Z. Bonaventura, O. Guaitella, A. Sobota, A. Bourdon, Physics of plasma jets and interaction with surfaces: review on modelling and experiments. Plasma Sources Sci. Technol. 31, 053001 (2022)

    ADS  Google Scholar 

  22. X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Guided ionization waves: theory and experiments. Phys. Rep. 540, 123–166 (2014)

    ADS  Google Scholar 

  23. Z. Xiong, M.J. Kushner, Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target. Plasma Sources Sci. Technol. 21, 034001 (2012)

    ADS  Google Scholar 

  24. M. Gherardi, N. Puač, D. Marić, A. Stancampiano, G. Malović, V. Colombo, Z.L. Petrović, Practical and theoretical considerations on the use of ICCD imaging for the characterization of non-equilibrium plasmas. Plasma Sources Sci. Technol. 24, 064004 (2015)

    ADS  Google Scholar 

  25. E. Robert, V. Sarron, D. Riès, S. Dozias, M. Vandamme, J.-M. Pouvesle, Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun. Plasma Sources Sci. Technol. 21, 034017 (2012)

    ADS  Google Scholar 

  26. Y. Morabit, R.D. Whalley, E. Robert, M.I. Hasan, J.L. Walsh, Turbulence and entrainment in an atmospheric pressure dielectric barrier plasma jet. Plasma Process Polym. 17, 1900217 (2020)

    Google Scholar 

  27. C. Zheng, Y. Kou, Z. Liu, A. Zhu, H. Jiang, Y. Huang, K. Yan, A microsecond-pulsed cold plasma jet for medical application. Plasma Med. 6, 179–191 (2016)

    Google Scholar 

  28. G. Deng, Q. Jin, S. Yin, C. Zheng, Z. Liu, K. Yan, Experimental study on bacteria disinfection using a pulsed cold plasma jet with helium/oxygen mixed gas. Plasma Sci. Technol. 20, 115503 (2018)

    ADS  Google Scholar 

  29. T. Gerling, A.V. Nastuta, R. Bussiahn, E. Kindel, K.-D. Weltmann, Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures. Plasma Sources Sci. Technol. 21, 034012 (2012)

    ADS  Google Scholar 

  30. T. Darny, J.-M. Pouvesle, V. Puech, C. Douat, S. Dozias, E. Robert, Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci. Technol. 26, 045008 (2017)

    ADS  Google Scholar 

  31. R.S. Sigmond, The residual streamer channel: Return strokes and secondary streamers. J. Appl. Phys. 56, 1355–1370 (1984)

    ADS  Google Scholar 

  32. S. Wu, H. Xu, X. Lu, Y. Pan, Effect of pulse rising time of pulse dc voltage on atmospheric pressure non-equilibrium plasma. Plasma Process Polym. 10, 136–140 (2013)

    Google Scholar 

  33. G.B. Sretenovic, I.B. Krstic, V.V. Kovacevic, B.M. Obradovic, M.M. Kuraica, Spectroscopic study of low-frequency helium DBD plasma jet. IEEE Trans Plasma Sci. 40, 2870–2878 (2012)

    ADS  Google Scholar 

  34. Z. Navrátil, R. Brandenburg, D. Trunec, Brablec a, St’ahel P, Wagner H-E and Kopecký Z, Comparative study of diffuse barrier discharges in neon and helium. Plasma Sources Sci. Technol. 15:, 8--17 (2005)

    ADS  Google Scholar 

  35. S.S. Ivković, N. Cvetanović, B.M. Obradović, Experimental study of gas flow rate influence on a dielectric barrier discharge in helium. Plasma Sources Sci. Technol. 31, 095017 (2022)

    ADS  Google Scholar 

  36. P.J. Bruggeman, N. Sadeghi, D.C. Schram, V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23, 023001 (2014)

    ADS  Google Scholar 

  37. W.C. Richardson, D.W. Setser, Penning ionization optical spectroscopy: Metastable helium (He 23S) atoms with nitrogen, carbon monoxide, oxygen, hydrogen chloride, hydrogen bromide, and chlorine. J. Chem. Phys. 58, 1809–1825 (1973)

    ADS  Google Scholar 

  38. N.K. Bibinov, A.A. Fateev, K. Wiesemann, Variations of the gas temperature in He/N2 barrier discharges. Plasma Sources Sci. Technol. 10, 579–588 (2001)

    ADS  Google Scholar 

  39. A.S. Chiper, V. Aniţa, C. Agheorghiesei, V. Pohoaţa, M. Aniţa, G. Popa, Spectroscopic diagnostics for a DBD plasma in He/Air and He/N2 gas mixtures. Plasma Process Polym. 1, 57–62 (2004)

    Google Scholar 

  40. J. Muñoz, C. Yubero, M.S. Dimitrijević, M.D. Calzada, Gas temperature determination in atmospheric pressure surface wave discharges from atomic line broadening 33, 2–5 (2009)

  41. J. Voráč, P. Synek, L. Potočňáková, J. Hnilica, V. Kudrle, Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet. Plasma Source Sci. Technol. 26, 025010 (2017)

    ADS  Google Scholar 

  42. J. Voráč, L. Kusýn, P. Synek, Deducing rotational quantum-state distributions from overlapping molecular spectra. Rev. Sci. Instrum. 90, 123102 (2019)

    ADS  Google Scholar 

  43. R. Wang, H. Xu, Y. Zhao, W. Zhu, K. Ostrikov, T. Shao, Effect of dielectric and conductive targets on plasma jet behaviour and thin film properties. J. Phys. D Appl. Phys. 52, 074002 (2019)

    ADS  Google Scholar 

  44. M.C. García, C. Yubero, A. Rodero, Gas temperature and air fraction diagnosis of helium cold atmospheric plasmas by means of atomic emission lines. Spectrochim Acta - Part B At. Spectrosc. 193, 106437 (2022)

    Google Scholar 

  45. C. Killer, Abel inversion algorithm. Matlabcentral - file Exch (2022)

  46. G. Pretzier, A new method for numerical Abel-inversion. Zeitschrift für Naturforsch. A 46a, 639–671 (1991)

    MathSciNet  ADS  Google Scholar 

  47. M.M. Kuraica, Konjević N, Electric field measurement in the cathode fall region of a glow discharge in helium. Appl. Phys. Lett. 70, 1521 (1997)

    ADS  Google Scholar 

  48. N. Cvetanović, M.M.M. Martinović, B.M. Obradović, M.M. Kuraica, Electric field measurement in gas discharges using stark shifts of He I lines and their forbidden counterparts. J. Phys. D Appl. Phys. 48, 205201 (2015)

    ADS  Google Scholar 

  49. B.M. Obradović, S.S. Ivković, M.M. Kuraica, Spectroscopic measurement of electric field in dielectric barrier discharge in helium. Appl. Phys. Lett. 92, 3–5 (2008)

    Google Scholar 

  50. B.M. Obradović, N. Cvetanović, S.S. Ivković, G.B. Sretenović, V.V. Kovačević, I.B. Krstić, M.M. Kuraica, Methods for spectroscopic measurement of electric field in atmospheric pressure helium discharges ed N Gherardi and T Hoder. Eur. Phys. J. Appl. Phys. 77, 30802 (2017)

    ADS  Google Scholar 

  51. M. Hofmans, A. Sobota, Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts. J. Appl. Phys. 125, 043303 (2019)

    ADS  Google Scholar 

  52. M. Mirzaee, M. Simeni Simeni, P.J. Bruggeman, Electric field dynamics in an atmospheric pressure helium plasma jet impinging on a substrate. Phys. Plasmas 27, 123505 (2020)

    ADS  Google Scholar 

  53. R.W.B. Pearse, A.G. Gaydon, The Identification of Molecular Spectra (Springer, Dordrecht, 1976)

    Google Scholar 

  54. Z. Navrátil, R. Josepson, N. Cvetanović, B. Obradović, P. Dvořák, Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium. Plasma Sources Sci. Technol. 25, 03 (2016)

    Google Scholar 

  55. L. Wang, N. Cvetanović, B. Obradović, G. Dinescu, C. Leys, A.Y. Nikiforov, Investigation of atmospheric pressure RF discharge with coexisting α and γ-modes. Plasma Sources Sci. Technol. 28, 055010 (2019)

    ADS  Google Scholar 

  56. A. Bourdon, T. Darny, F. Pechereau, J.-M. Pouvesle, P. Viegas, S. Iséni, E. Robert, Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture. Plasma Sources Sci. Technol. 25, 035002 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

Preliminary results of this study were partially presented at the conference SPIG 2020 as a poster presentation, and published in the conference proceedings. This work was supported by the Ministry of Education and Science of the Republic of Serbia within the projects 451-03-47/2023-01/ 200162 and /200128.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to N. Cvetanović.

Additional information

T.I.: Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications.

Guest editors: Bratislav Obradović, Jovan Cvetić, Dragana Ilić, Vladimir Srećković, Sylwia Ptasinska.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekh, S., Cvetanović, N., Sretenović, G.B. et al. Experimental study of a microsecond-pulsed cold plasma jet. Eur. Phys. J. D 77, 115 (2023). https://doi.org/10.1140/epjd/s10053-023-00692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00692-8

Navigation