Skip to main content
Log in

Comment on “Spin correlations in elastic e\(^{+}\)e\(^{-}\) scattering in QED”

  • Comment – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the previous work, “Spin correlations in elastic \(e^+ e^-\) scattering in QED” (Yongram in Eur Phys J 7:71–74, 2008), spin correlations for entangled electrons and positrons as emergent particles of electron–positron scattering (also known as Bhabha scattering) were calculated at tree level in QED. When trying to reproduce the author’s work, we have found different results. In this work, we show the calculation for fully (initial and final polarized states) and partially (just final polarized states) polarized probability amplitudes for electron–positron scattering at all energies. While Yongram claims that violation of the Clauser–Horne inequality (CHI) occurs at all energies for both mentioned cases, for fully polarized scattering we found violation of the CHI for speeds \(\beta \gtrsim 0.696\), including the high energy limit, supporting the agreement between QED and foundations of quantum mechanics. However, for initially unpolarized particles we found no violation of the CHI. We argue that averaging over the initial polarizations washes out the non-local correlations needed to violate a Bell-type inequality.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Our results can be reproduced without a data set. The reported plots were generated using a Mathematica code to calculate the well-known scattering amplitude in Equ. (2) for spinors shown in Appendix A and B].

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  Google Scholar 

  2. D. Bohm, Y. Aharonov, Phys. Rev. 108, 1070 (1957). https://doi.org/10.1103/PhysRev.108.1070

    Article  ADS  MathSciNet  Google Scholar 

  3. J.S. Bell, Phys Phys. Fiz. 1, 195 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  4. S.A. Abel, M. Dittmar, H. Dreinder, Phys. Lett. B 280, 304–312 (1992). https://doi.org/10.1016/0370-2693(92)90071-B

    Article  ADS  Google Scholar 

  5. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monore et al., Nature 409, 791–794 (2001). https://doi.org/10.1038/35057215

    Article  ADS  Google Scholar 

  6. M. Ansmann, H. Wang, R.C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley et al., Nature 461, 504–506 (2009). https://doi.org/10.1038/nature08363

    Article  ADS  Google Scholar 

  7. W. Pfaff, T.H. Taminiau, L. Robledo, H. Bernien, M. Markham, D.J. Twitchen et al., Nat. Phys. 9, 29–33 (2013). https://doi.org/10.1038/nphys2444

    Article  Google Scholar 

  8. A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002). https://doi.org/10.1103/PhysRevLett.89.240401

    Article  ADS  Google Scholar 

  9. B. Hensen, H. Bernien, A. Dréau et al., Nature 526, 682–686 (2015). https://doi.org/10.1038/nature15759

    Article  ADS  Google Scholar 

  10. L.K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015). https://doi.org/10.1103/PhysRevLett.115.250402

    Article  ADS  Google Scholar 

  11. J.R. Hance, S. Hossenfelder, Found. Phys. 52, 81 (2022). https://doi.org/10.1007/s10701-022-00602-9

    Article  ADS  Google Scholar 

  12. E. Witten, Rev. Mod. Phys. 90, 045003 (2018). https://doi.org/10.1103/RevModPhys.90.045003

    Article  ADS  Google Scholar 

  13. P. Emonts, I. Kukuljan, Phys. Rev. Res. 4, 033039 (2022). https://doi.org/10.1103/PhysRevResearch.4.033039

    Article  Google Scholar 

  14. L. Capizzi, C. De Fazio, M. Mazzoni, L. Santamaría-Sanz, O. Castro-Alvaredo, J. High Energy Phys. 2022, 128 (2022). https://doi.org/10.1007/JHEP12(2022)128

    Article  ADS  Google Scholar 

  15. S. Banerjee, A.K. Alok, R. Srikanth et al., Eur. Phys. C 75, 487 (2015). https://doi.org/10.1140/epjc/s10052-015-3717-x

    Article  ADS  Google Scholar 

  16. B. Meszena, A. Patkos, Mod. Phys. Lett. A 26, 02 (2011). https://doi.org/10.1142/S0217732311034694

    Article  Google Scholar 

  17. W. Jun, J.A. Hutasoit, D. Boyanovsky, Richard Holman, Phys. Rev. D 82, 013006 (2010). https://doi.org/10.1103/PhysRevD.82.013006

    Article  ADS  Google Scholar 

  18. W. Jun, J.A. Hutasoit, D. Boyanovsky, R. Holman, Int. J. Mod. Phys. A 26, 32 (2011). https://doi.org/10.1142/S0217751X11054954

    Article  Google Scholar 

  19. Daniel Boyanovsky, Phys. Rev. D 84, 065001 (2011). https://doi.org/10.1103/PhysRevD.84.065001

    Article  ADS  Google Scholar 

  20. G. Quinta, A. Sousa, Y. Omar. arXiv:2207.03303

  21. J.B. Araujo, B. Hiller, I.G. da Paz, M. Manoel, M. Ferreira, S. Marcos Jr., H.A.S. Cost, Phys. Rev. D 100, 105018 (2019). https://doi.org/10.1103/PhysRevD.100.105018

    Article  ADS  MathSciNet  Google Scholar 

  22. L. Lello, D. Boyanovsky, R. Holman, J. High Energy Phys. 11, 116 (2013). https://doi.org/10.1007/JHEP11(2013)116

    Article  ADS  Google Scholar 

  23. M. Hentschinski, K. Kutak, Eur. Phys. J. C 82, 111 (2022). https://doi.org/10.1140/epjc/s10052-022-10056-y

    Article  ADS  Google Scholar 

  24. J. Alan, Barr. Phys. Lett. B 825, 136866 (2022). https://doi.org/10.1016/j.physletb.2021.136866

    Article  Google Scholar 

  25. M. Włodarczyk, P. Caban, J. Ciborowski, M. Drągowski, J. Rembieliński, Phys. Rev. A 95, 022103 (2017). https://doi.org/10.1103/PhysRevA.95.022103

    Article  ADS  Google Scholar 

  26. J.D. Fonseca, B. Hiller, J.B. Araujo, I.G. da Paz, M. Sampaio, Phys. Rev. D 106, 056015 (2022). https://doi.org/10.1103/PhysRevD.106.056015

    Article  ADS  Google Scholar 

  27. M. Fabbrichesi, R. Floreanini, E. Gabrielli. arXiv:2208.11723

  28. A. Sinha, A. Zahed. arXiv:2212.10213

  29. F. Samuel, A. Serafini. arXiv: 2209.01405

  30. Y. Takubo, T. Ichikawa, S. Higashino, Y. Mori, K. Nagano, I. Tsutsui, Phys. Rev. D 104, 056004 (2021). https://doi.org/10.1103/PhysRevD.104.056004

    Article  ADS  Google Scholar 

  31. C. Severi, C. Esposti Boschi, F. Maltoni, M. Sioli, Eur. Phys. J. C 82, 285 (2022). https://doi.org/10.1140/epjc/s10052-022-10245-9

    Article  ADS  Google Scholar 

  32. J. Clauser, H. Michael, Phys. Rev. D 10, 526 (1974). https://doi.org/10.1103/PhysRevD.10.526

    Article  ADS  Google Scholar 

  33. J. Clauser, A. Shimony, Rep. Prog. Phys. 41, 1881 (1978). https://doi.org/10.1088/0034-4885/41/12/002

  34. N. Yongram, Eur. Phys. J. 47, 71–74 (2008). https://doi.org/10.1140/epjd/e2008-00030-6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Alfredo Aranda and Carlos Alvarado for useful discussions and guidance on this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally on this work.

Corresponding author

Correspondence to Kort Beck.

Appendices

Appendix A: Spinors for section II

In the Dirac representation of the gamma matrices, the spinors for particles and antiparticles normalized as \(\overline{u}{(p)}^su{(p)}^r = 2\,m \delta _{sr}\) and \(\overline{v}{(p)}^sv{(p)}^r =- 2\,m \delta _{sr}\), are given by

$$\begin{aligned}{} & {} u^{s}{(p)}=\sqrt{E+m} \begin{pmatrix} \varphi ^s \\ \frac{\vec {\sigma } \cdot \vec {p}}{E+m} \varphi ^s \end{pmatrix}, \end{aligned}$$
(20)
$$\begin{aligned}{} & {} v^{s}{(p)}=-\sqrt{E+m} \begin{pmatrix} \frac{\vec {\sigma } \cdot \vec {p}}{E+m} \eta ^{s} \\ \eta ^{s} \end{pmatrix}, \end{aligned}$$
(21)

where \(\varphi ^s\) and \(\eta ^s\) are Weyl spinors encoding spin direction. For spin along x, y or z axis they are eigenstates of the Pauli sigma matrices \(\sigma ^j\), if the spin direction is quantized along an arbitrary axis \(\hat{n}\), then they are eigenstates of the linear combination \(\vec {\sigma } \cdot \hat{n}\).

Working in the center of mass reference frame, lets consider an initial electron with spin up along z axis and four-momentum \(p^\mu _1\) and similarly a initial positron also with spin up along z axis and four-momentum \(p^\mu _2\), with their momenta given by

$$\begin{aligned} p^\mu _1 = ( E,0,\gamma m\beta ,0 )&,p^\mu _2 = ( E,0, -\gamma m\beta ,0 ) . \end{aligned}$$
(22)

For the electron, physical particle spin is the same as spinor \(u{(p_1)}^s\) spin. Pointing in the \(+z\) direction, the Weyl spinor is

$$\begin{aligned} \varphi ^1 = \left( \begin{array}{c} 1\\ 0\\ \end{array}\right) . \end{aligned}$$
(23)

For the positron, physical particle spin is opposite to the spinor \(v{(p_2)}^r\) spin. For physical spin along the z direction, the corresponding Weyl spinor is

$$\begin{aligned} \eta ^2 = \left( \begin{array}{c} 0\\ 1\\ \end{array}\right) , \end{aligned}$$
(24)

plugging this into (20) we get the initial spinors

$$\begin{aligned} u{(p_1)} = \sqrt{E + m} \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ i\rho \end{array}\right) , v{(p_2)} = - \sqrt{E + m} \left( \begin{array}{c} i\rho \\ 0 \\ 0 \\ 1 \end{array}\right) . \end{aligned}$$
(25)

Now for the final electron and positron with momenta \(k^\mu _1\) and \(k^\mu _2\) respectively

$$\begin{aligned} k^\mu _1 = ( E,0,0,\gamma m\beta )&,k^\mu _2 = ( E,0,0,-\gamma m\beta ) , \end{aligned}$$
(26)

we look for spinor spin lying on the xy plane measured relative to the x-axis for both particles. For this we take the Weyl spinor in (23) and rotate it using the spin rotation operator

$$\begin{aligned}&{e}^{-i\frac{\theta }{2} \vec {\sigma } \cdot \hat{n}} \nonumber \\&\quad = { \left( \begin{array}{cc} \cos (\theta /2)-in^{3}\sin (\theta /2) &{}-i(n^{1}-in^{2})\sin (\theta /2) \\ -i(n^{1}+in^{2})\sin (\theta /2) &{}\cos (\theta /2)+in^{3}\sin (\theta /2) \end{array}\right) } . \end{aligned}$$
(27)

Rotations are performed by an angle \(\theta \) around the \(\hat{n}\) axis. As illustrated in Fig. 4, looking at the electron like coming towards us, spin direction is measured clockwise, looking at the positron like coming towards us, spin direction is also measured clockwise so the Weyl spinor is the same for both spinors \(u{(k_1)}\) and \(v{(k_2)}\). The physical positron spin direction measured in the lab is opposite to the spinor \(v{(k_2)}\) direction, so for a \(\chi _2\) spinor spin direction, the lab measures a \(\chi _2 + \pi \) spin direction. First rotate \(\varphi ^1\) by an angle \(\theta = \pi /2\) around the y-axis, then rotation again this time y an angle \(\chi _1\) around the z axis. Then repeat for the positron but perform the second rotation by an angle \(\chi _2\), the Weyl spinor is

$$\begin{aligned} \xi _k = \frac{1}{\sqrt{2}} \left( \begin{array}{c} {e}^{-i\chi _k /2} \\ {e}^{-i\chi _k /2} \end{array}\right) . \end{aligned}$$
(28)

Plugging this into (20) we obtain the spinor expressions for the final particles

$$\begin{aligned}&u{(k_1)} = \sqrt{\frac{E+m}{2}} \left( \begin{array}{c} {e}^{-i\chi _1 /2} \\ {e}^{i\chi _1 /2} \\ \rho {e}^{-i\chi _1 /2} \\ -\rho {e}^{i\chi _1 /2} \\ \end{array}\right) , \end{aligned}$$
(29)
$$\begin{aligned}&v{(k_2)} = - \sqrt{\frac{E+m}{2}} \left( \begin{array}{c} - \rho {e}^{-i\chi _2 /2} \\ \rho {e}^{i\chi _2 /2} \\ {e}^{-i\chi _2 /2} \\ {e}^{i\chi _2 /2} \\ \end{array}\right) . \end{aligned}$$
(30)

Appendix B: Spinors for section III

Consider the final electron and positron as having momenta \(k^\mu _1 = ( E,\gamma m\beta ,0,0)\) and \(k^\mu _2 = ( E,-\gamma m\beta ,0,0)\), and suppose their spins lie on the yz-plane. To describe the Weyl spinors in (20) and (21), it is enough to rotate \(\varphi ^1\) from (23) around the y-axis. Denoting as \(\chi _1\) and \(\chi _2\) the rotation angles that describe the spin direction of the electron and positron, and using the expression (27), we obtain the Weyl spinor

$$\begin{aligned} \xi _k = \left( \begin{array}{c} \cos {(\chi _k /2)} \\ -i\sin {(\chi _k /2)} \end{array}\right) . \end{aligned}$$
(31)

Plugging this expression into (20) and (21), we obtain the final four-spinors:

$$\begin{aligned}&u{(k_1)} = \sqrt{E+m} \left( \begin{array}{c} \cos {(\chi _1 /2)} \\ -i\sin {(\chi _1 /2)} \\ -i \rho \sin {(\chi _1 /2)} \\ \rho \cos {(\chi _1 /2)} \\ \end{array}\right) , \end{aligned}$$
(32)
$$\begin{aligned}&v{(k_2)} = - \sqrt{E+m} \left( \begin{array}{c} i \rho \sin {(\chi _2 /2)} \\ -\rho \cos {(\chi _2 /2)} \\ \cos {(\chi _2 /2)} \\ -i \sin {(\chi _2 /2)} \\ \end{array}\right) . \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, K., Jacobo, G. Comment on “Spin correlations in elastic e\(^{+}\)e\(^{-}\) scattering in QED”. Eur. Phys. J. D 77, 85 (2023). https://doi.org/10.1140/epjd/s10053-023-00665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00665-x

Navigation