Skip to main content

Advertisement

Log in

Super-resolution for confocal scanning fluorescence microscopy by rotating line-shape point spread function of super-oscillation technique

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we introduce the super-oscillation technique with the binary phase mask to obtain the line-shape point spread function which produces a super-resolution image in confocal scanning fluorescence microscopy. By rotating the binary phase mask for the four different angles, the line-shape point spread function spins the corresponding angles. From obtained dataset, the Richardson–Lucy deconvolution algorithm is used to acquire the super-resolution image. The imaging results demonstrated the ability of the proposed method to improve the spatial resolution in the confocal scanning fluorescence microscopy.

Graphical abstract

The line-shape binary phase mask and the super-oscillation point spread function

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. T. Wilson, Confocal Microscopy, vol. 426 (Academic Press, London, 1990), pp.1–64

    Google Scholar 

  2. S. Segawa, Y. Kozawa, S. Sato, Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett. 39(11), 3118 (2014)

    Article  ADS  Google Scholar 

  3. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210 (2000)

    Article  ADS  Google Scholar 

  4. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  5. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006)

    Article  Google Scholar 

  6. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  ADS  Google Scholar 

  7. S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)

    Article  ADS  Google Scholar 

  8. K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013)

    Article  ADS  Google Scholar 

  9. E. D’Este et al., Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016)

    Article  ADS  Google Scholar 

  10. S.J. Sahl, S.W. Hell, S. Jakobs, Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017)

    Article  Google Scholar 

  11. R. Schmidt et al., MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021)

    Article  ADS  Google Scholar 

  12. S.W. Hell, Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    Article  ADS  Google Scholar 

  13. V. Le, X. Wang, C. Kuang, X. Liu, Background suppression in confocal scanning fluorescence microscopy with superoscillations. Opt. Commun. 426, 541–546 (2018)

    Article  ADS  Google Scholar 

  14. G.T. Di Francia, Super-gain antennas and optical resolving power. Nuovo Cim. 9(Suppl 3), 426–435 (1952)

    Article  Google Scholar 

  15. E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)

    Article  ADS  Google Scholar 

  16. G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, F. Lin, Super-oscillatory focusing of circularly polarized light by ultralong focal length planar lens based on binary amplitude-phase modulation. Sci. Rep. 6, 9068 (2016)

    Google Scholar 

  17. X.H. Dong, A.M. Wong, M. Kim, G.V. Eleftheriades, Superresolution far-field imaging of complex objects using reduced superoscillating ripples. Optica 4(9), 1126–1133 (2017)

    Article  ADS  Google Scholar 

  18. Y. Kozawa, D. Matsunaga, S. Sato, Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5(2), 86–92 (2018)

    Article  ADS  Google Scholar 

  19. L.V. Nhu, High resolution for confocal fluorescence microscopy via extending zero-region of super-oscillation. Opt. Quant. Electron. 51, 136 (2019)

    Article  MathSciNet  Google Scholar 

  20. W.H. Richardson, Bayesian-based iterative method of image restoration. JOSA 62(1), 55–59 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Van Nhu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nhu, L. Super-resolution for confocal scanning fluorescence microscopy by rotating line-shape point spread function of super-oscillation technique. Eur. Phys. J. D 77, 77 (2023). https://doi.org/10.1140/epjd/s10053-023-00661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00661-1

Navigation