Skip to main content
Log in

Checking the reliability of opacity databases

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Mathematical inequalities, combined with atomic-physics sum rules, enable one to derive lower and upper bounds for the Rosseland and/or Planck mean opacities. The resulting constraints must be satisfied, either for pure elements or mixtures. The intriguing law of anomalous numbers, also named Benford’s law, is of great interest to detect errors in line-strength collections required for fine-structure calculations. Testing regularities may reveal hidden properties, such as the fractal nature of complex atomic spectra. The aforementioned constraints can also be useful to assess the reliability of experimental measurements. Finally, we recall that it is important to quantify the uncertainties due to interpolations in density-temperature opacity (or more generally atomic-data) tables, and that convergence studies are of course unavoidable in order to address the issue of completeness in terms of levels, configurations or superconfigurations, which is a cornerstone of opacity calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Notes

  1. The total frequency-dependent opacity can be calculated as the sum of the contributions of different processes: photo-excitation (or bound-bound opacity) \(\kappa _{bb}\), photo-ionization (or bound-free opacity) \(\kappa _{bf}\), inverse Bremsstrahlung \(\kappa _{\textrm{ff}}\) (or free-free opacity) and photon scattering \(\kappa _{\textrm{scat}}\). It is then given by the following expression: \(\kappa (h\nu )=(\kappa _{\textrm{bb}}(h\nu )+\kappa _{\textrm{bf}}(h\nu )+\kappa _{\textrm{ff}}(h\nu ))(1-e^{-h\nu /k_BT})+\kappa _{\textrm{scat}}(h\nu )\). However, in some definitions of the Planck mean opacity in connection with radiation-transfer modeling, the scattering contribution is not included [30]. For simplicity here, we follow the work of Bernstein and Dyson [11] and include the scattering contribution both in the Planck and Rosseland mean opacities. Since that contribution is usually much smaller than the others (except at very high frequency), and since we are looking for bounds, such an approximation seems reasonable. We also note that a factor \(1-e^{-u}\) is missing in the denominator of the expression of \(W_P(u)\) in Eq. (24) of Ref. [11].

  2. Setting \(f^2(u)g^2(u)=R(u)\) and \(f^2(u)+g^2(u)=\kappa (u)\) in the second inequality (26) yields

    $$\begin{aligned} \frac{1}{\kappa _R}\le \frac{1}{4\mathscr {S}}\left( \int _0^{\infty } [\kappa (u)-\sqrt{\kappa ^2(u)-4R(u)}]~\textrm{d}u\right) \nonumber \\ \times \left( \int _0^{\infty }[\kappa (u)+\sqrt{\kappa ^2(u)-4R(u)}]~\textrm{d}u\right) \end{aligned}$$
    (42)

    provided that the arguments of the square roots are positive. This implies in any case

    $$\begin{aligned} \kappa _R\ge \frac{1}{2\mathscr {S}}. \end{aligned}$$
    (40)

References

  1. T.R. Carson, D.F. Mayers, D.W.N. Stibbs, Mon. Not. R. Astr. Soc. 140, 483–536 (1968)

    ADS  Google Scholar 

  2. B.H. Armstrong, R.W. Nicholls, Emission, Absorption and Transfer of Radiation in Heated Atmospheres (Pergamon Press, Oxford, 1972)

    Google Scholar 

  3. G.B. Rybicki, A.P. Lightman, Radiative processes in astrophysics (Wiley, New York, 1985)

    Google Scholar 

  4. W.F. Huebner, W.D. Barfield, Opacity (Springer, New York, 2016)

    Google Scholar 

  5. G. Michaud, G. Alecian and J. Richer, Atomic Diffusion in Stars (Springer Cham, 2016)

  6. J.-C. Pain and F. Gilleron, Opacity calculations for stellar astrophysics Proceedings of the PHOST “Physics of Oscillating Stars” conference, 2-7 Sept. 2018, Banyuls-sur-mer (France). https://doi.org/10.5281/zenodo.1590773

  7. Y. Ralchenko, Modern Methods in Collisional-Radiative Modeling of Plasmas (Springer; 1st ed. 2016)

  8. J. Bauche, C. Bauche-Arnoult and O. Peyrusse, Atomic Properties in Hot Plasmas. From Levels to Superconfigurations (Springer, 2015)

  9. G.B. Dyson, Project Orion (Henry Holt, New York, 2002)

    Google Scholar 

  10. J. Bernstein and F. J. Dyson, The continuous opacity and equations of state of light elements at low densities (General Atomic Report GA-848, unpublished)

  11. J. Bernstein, F. Dyson, PASP 115, 1383–1387 (2003)

    ADS  Google Scholar 

  12. B.H. Armstrong, Astrophys. J. 136, 309–310 (1962)

    ADS  Google Scholar 

  13. T.K. Rebane, P.A. Braun, Opt. Spectrosc. 27, 465–486 (1969)

    Google Scholar 

  14. F. Weinhold, J. Chem. Phys. 54, 1874–1881 (1971)

    ADS  Google Scholar 

  15. V.S. Imshennik, I.N. Mikhailov, M.M. Basko, S.V. Molodtsov, Sov. Phys. JETP 63, 980–985 (1986)

    ADS  Google Scholar 

  16. D. Liberman, Upper limits on the Rosseland mean opacity, report LA-2700, Los Alamos Scientific Laboratory of the University of California (U.S, Atomic Energy Commission, 1962)

    Google Scholar 

  17. S.V. Molodtsov, J. Exp. Theor. Phys. 77, 406–412 (1993)

    ADS  Google Scholar 

  18. A. Bar-Shalom, J. Oreg, W.H. Goldstein, D. Shvarts, A. Zigler, Phys. Rev. A 40, 3183–3193 (1989)

    ADS  Google Scholar 

  19. G.B. Ribicki, A.P. Lightman, Radiative processes in astrophysics (Wiley, New York, 1979)

    Google Scholar 

  20. D. Salzmann, Atomic physics in hot plasmas (Oxford University Press, New York and Oxford, 1998)

    Google Scholar 

  21. J.-C. Pain, Plasma 3, 42–64 (2021)

    Google Scholar 

  22. J.-C. Pain, Plasma 5, 154–175 (2022)

    Google Scholar 

  23. H.A. Schwarz, Acta Societatis Scientiarum Fennicae 15, 315–362 (1885)

    Google Scholar 

  24. H. Bethe, E. Salpeter, Quantum mechanics of one- and two-electron atoms (Academic Press, New York, 1957)

    MATH  Google Scholar 

  25. E. Merzbacher, Quantum mechanics (Wiley, New York, 1970)

    MATH  Google Scholar 

  26. R. D. Cowan, The theory of atomic structure and spectra (University of California Press, 1981)

  27. L. Vep\(\rm \check{s}\)tas, Ramanujan J. 27, (2012) 387–408

  28. J.E. Bailey, T. Nagayama, G.P. Loisel, G.A. Rochau, C. Blancard, J. Colgan, P. Cossé, G. Faussurier, C.J. Fontes, F. Gilleron, I. Golovkin, S.B. Hansen, C.A. Iglesias, D.P. Kilcrease, J.J. MacFarlane, R.C. Mancini, S.N. Nahar, C. Orban, J.-C. Pain, A.K. Pradhan, M. Sherrill, B.G. Wilson, A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature 517, 56–59 (2015)

    ADS  Google Scholar 

  29. C.A. Iglesias, High Energy Density Phys. 15, 4–7 (2015)

    ADS  Google Scholar 

  30. D. Mihalas, Stellar atmospheres (W. H. Freeman, 1978)

    Google Scholar 

  31. O. L. Hölder, Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen (1889) 38–47

  32. E.A. Milne, Proc. R. Astron. Soc. 43, 979–984 (1925)

    ADS  Google Scholar 

  33. R. Peterson, G. Moses, Comp. Phys. Commun. 28, 405–426 (1983)

    ADS  Google Scholar 

  34. H.A. Kramers, Phil. Mag. 46, 836–871 (1923)

    Google Scholar 

  35. G. Pólya, G. Szegö, Aufgaben aus der Analysis, vol. I (Springer, Berlin, 1925)

    MATH  Google Scholar 

  36. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1934)

    MATH  Google Scholar 

  37. C.-J. Zhao, W.-S. Cheung, J. Inequalities Appl. 2013, 591–595 (2013)

    Google Scholar 

  38. J. Karamata, Acad. Serbe Sci. Publ. Inst. Math. 2, 131–145 (1948)

    MathSciNet  Google Scholar 

  39. W.H. Young, Proc. R. Soc. Lond. Ser. A 87, 225–229 (1912)

    ADS  Google Scholar 

  40. S. Newcomb, Am. J. Math. 4, 39–40 (1881)

    MathSciNet  Google Scholar 

  41. J. Wlodarski, Fibonacci Q. 9, 87–88 (1971)

    Google Scholar 

  42. L.C. Washington, Fibonacci Q. 19, 175–177 (1981)

    MathSciNet  Google Scholar 

  43. L. Barabesi, A. Cerioli, D. Perrotta, Stat. Meth. Appl. 30, 767–778 (2021)

    Google Scholar 

  44. A. Berger, T.P. Hill, Stat. Methods Appl. 30, 779–795 (2020)

    Google Scholar 

  45. F. Benford, Proc. Am. Philos. Soc. 78, 551–572 (1938)

    ADS  Google Scholar 

  46. J.-C. Pain, Phys. Rev. E 77, 012102 (2008)

    ADS  Google Scholar 

  47. J.-C. Pain, High Energy Density Phys. 9, 392–401 (2013)

    ADS  Google Scholar 

  48. B.G. Wilson, F. Rogers, C. Iglesias, Phys. Rev. A 37, 2695–2697 (1988)

    ADS  Google Scholar 

  49. R.C.M. Learner, J. Phys. B: Atom. Mol. Phys. 15, L891–L895 (1982)

    ADS  Google Scholar 

  50. V.A. Dzuba, V.V. Flambaum, Phys. Rev. Lett. 104, 213002 (2010)

    ADS  Google Scholar 

  51. K. Fujii, J.-C. Berengut, Phys. Rev. Lett. 124, 185002 (2019)

    ADS  Google Scholar 

  52. M.J. Seaton, Mon. Not. R. Astron. Soc. 265, L25–L28 (1993)

    ADS  Google Scholar 

  53. J. Colgan, D.P. Kilcrease, N.H. Magee, M.E. Sherrill, J. Abdallah Jr., P. Hakel, C.J. Fontes, J.A. Guzik, K.A. Mussack, Astrophys. J. 817, 116 (2016)

    ADS  Google Scholar 

  54. C. Iglesias, F.J. Rogers, Astrophys. J. 464, 943–953 (1996)

    ADS  Google Scholar 

  55. F.J. Rogers, A. Nayfonov, Astrophys. J. 576, 1064–1074 (2002)

    ADS  Google Scholar 

  56. W. Yang, M. Li, Proc. In. Astron. Union 4(S252), 123–124 (2008)

    Google Scholar 

  57. C. Neuforge-Verheecke, J.A. Guzik, J.J. Keady, N.H. Magee, P.A. Bradley, A. Noels, Astrophys. J. 561, 450–454 (2001)

    ADS  Google Scholar 

  58. Such an observation was raised to our attention by the anonymous referee

  59. C. Bauche-Arnoult, J. Bauche, M. Klapisch, Phys. Rev. A 20, 2424–2439 (1979)

    ADS  Google Scholar 

  60. C. Bauche-Arnoult, J. Bauche, M. Klapisch, Phys. Rev. A 31, 2248–2259 (1985)

    ADS  Google Scholar 

  61. M. Masjed-Jamei, Appl. Math. Lett. 22, 1335–1339 (2009)

    MathSciNet  Google Scholar 

  62. H. Minkowski, Geometrie der Zahlen (Teubner, Leipzig, 1896)

    MATH  Google Scholar 

  63. G.J. Woeginger, Math. Mag. 82, 202–207 (2009)

    Google Scholar 

  64. J.L.W.V. Jensen, Acta Math. 30, 175–193 (1906)

    MathSciNet  Google Scholar 

  65. J. Tennyson, S.N. Yurchenko, Atoms 6, 26 (2018)

    ADS  Google Scholar 

  66. J.-C. Pain, F. Gilleron, High Energy Density Phys. 34, 100745 (2020)

    Google Scholar 

  67. O. Klein, Y. Nishina, Z. Phys. 52, 853–868 (1929)

    ADS  Google Scholar 

  68. S. Plouffe, Identities inspired from Ramanujan Notebooks II, http://www.plouffe.fr/simon/identities.htmlhttp://www.plouffe.fr/simon/constants/zeta5.txt

  69. M. Chamberland and P. Lopatto, J. Integer Seq. 14, (2011) article 11.2.5

Download references

Acknowledgements

We would like to thank Alain Fontaine, Jean-Pierre Raucourt and Valérie Tabourin for their computational support and for helpful discussions. We are indebted to the anonymous referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

J-CP and PC developed the theoretical formalism, performed the analytic calculations and the computations. J-CP wrote the first version of the manuscript.

Corresponding author

Correspondence to Jean-Christophe Pain.

Additional information

Guest editors: Annarita Laricchiuta, Iouli E. Gordon, Christian Hill, Gianpiero Colonna, Sylwia Ptasinska.

T.I. : Atomic and Molecular Data and Their Applications: ICAMDATA 2022.

Contribution of the Klein–Nishina scattering cross section to the Rosseland mean

Contribution of the Klein–Nishina scattering cross section to the Rosseland mean

We have seen that the Thomson opacity reads

$$\begin{aligned} \kappa _{\textrm{Th}}=\frac{8\pi }{3}\left( \frac{e^2}{4\pi \epsilon _0mc^2}\right) ^2\frac{Z^*}{A}\mathcal {N}_A. \end{aligned}$$
(1)

Let us introduce the reduced parameter

$$\begin{aligned} \gamma =\frac{h\nu }{mc^2}. \end{aligned}$$
(2)

The Klein–Nishina relativistic cross section [67] reads

$$\begin{aligned} \kappa _{\textrm{KN}}={} & {} \kappa _{\textrm{Th}}\left\{ \frac{1+\gamma }{\gamma ^2}\left[ \frac{2(1+\gamma )}{2\gamma +1}-\frac{1}{\gamma }\ln (2\gamma +1)\right] \right. \nonumber \\{} & {} \left. +\frac{1}{2\gamma }\ln (2\gamma +1)-\frac{3\gamma +1}{(2\gamma +1)^2}\right\} . \end{aligned}$$
(3)

If \(\gamma \ll 1\), one has

$$\begin{aligned} \kappa _{\textrm{KN}}=\kappa _{\textrm{Th}}\left( 1-2\gamma +\frac{26}{5}\gamma ^2+\cdots \right) \end{aligned}$$
(4)

and if \(\gamma \gg 1\):

$$\begin{aligned} \kappa _{\textrm{KN}}\approx \frac{3}{8\gamma }\kappa _{\textrm{Th}}\left[ \ln (2\gamma )+\frac{1}{2}\right] . \end{aligned}$$
(5)

Let us assume that the relativistic effects are negligible. We can then use Eq. (4) yielding

$$\begin{aligned} \frac{1}{\kappa _{\textrm{KN}}}\approx \frac{1}{\kappa _{\textrm{Th}}}\left( 1+2\gamma -\frac{6}{5}\gamma ^2\right) . \end{aligned}$$
(6)

Using the reduced variable \(u=h\nu /(k_BT)\), one has for the Rosseland mean in the case of the Klein–Nishina expression of the scattering cross section

$$\begin{aligned} \kappa _{\textrm{R,KN}}= & {} \frac{4\pi ^4}{15}\kappa _{\textrm{Th}}\left[ \int _0^{\infty }\frac{u^4e^{-u}}{(1-e^{-u})^2}\left( 1+\frac{2k_BT}{mc^2}u\right. \right. \nonumber \\{} & {} \left. \left. -\frac{6}{5}\left( \frac{k_BT}{mc^2}\right) ^2u^2\right) \textrm{d}u\right] ^{-1} \end{aligned}$$
(7)

i.e.,

$$\begin{aligned} \kappa _{\textrm{R,KN}}= & {} \frac{4\pi ^4}{15}\kappa _{\textrm{Th}}\left[ \int _0^{\infty }\frac{u^4e^{-u}}{(1-e^{-u})^2}\textrm{d}u\right. \nonumber \\{} & {} \left. +2\frac{k_BT}{mc^2}\int _0^{\infty }\frac{u^5e^{-u}}{(1-e^{-u})^2}\textrm{d}u\right. \nonumber \\{} & {} \left. -\frac{6}{5}\left( \frac{k_BT}{mc^2}\right) ^2\int _0^{\infty }\frac{u^6e^{-u}}{(1-e^{-u})^2}\textrm{d}u\right] ^{-1}. \end{aligned}$$
(8)

Using

$$\begin{aligned} \int _0^{\infty }\frac{u^4e^{-u}}{(1-e^{-u})^2}\textrm{d}u=\frac{4\pi ^4}{15} \end{aligned}$$
(9)

as well as

$$\begin{aligned} \int _0^{\infty }\frac{u^5e^{-u}}{(1-e^{-u})^2}\textrm{d}u=120~\zeta (5) \end{aligned}$$
(10)

and

$$\begin{aligned} \int _0^{\infty }\frac{u^6e^{-u}}{(1-e^{-u})^2}\textrm{d}u=\frac{16\pi ^6}{21}, \end{aligned}$$
(11)

one finally obtains

$$\begin{aligned} \kappa _{\textrm{R,KN}}=\kappa _{\textrm{Th}}\left[ 1+\frac{900~\zeta (5)}{\pi ^4}\left( \frac{k_BT}{mc^2}\right) -\frac{24\pi ^2}{7}\left( \frac{k_BT}{mc^2}\right) ^2\right] \end{aligned}$$
(12)

and using [68, 69]:

$$\begin{aligned} \zeta (5)= & {} \frac{\pi ^5}{294}-\frac{72}{35}\sum _{n=1}^{\infty }\frac{1}{n^5\left( e^{2\pi n}-1\right) }\nonumber \\{} & {} -\frac{2}{35}\sum _{n=1}^{\infty }\frac{1}{n^5\left( e^{2\pi n}+1\right) }\approx 1.03692, \end{aligned}$$
(13)

one has

$$\begin{aligned} \kappa _{\textrm{R,KN}}\approx \kappa _{\textrm{Th}}\left[ 1+9.58057\left( \frac{k_BT}{mc^2}\right) -33.8386\left( \frac{k_BT}{mc^2}\right) ^2\right] . \end{aligned}$$
(14)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pain, JC., Croset, P. Checking the reliability of opacity databases. Eur. Phys. J. D 77, 60 (2023). https://doi.org/10.1140/epjd/s10053-023-00642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00642-4

Navigation