Skip to main content

Advertisement

Log in

Particle size and temperature effects on thermal conductivity of aqueous Ag nanofluids: modelling and simulations using classical molecular dynamics

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the current study, we employ molecular dynamics simulations to explain how the addition of metallic (Ag) nanoparticles to an aqueous nanofluid increased the thermal conductivity with temperature. Through the Green–Kubo framework, equilibrium molecular dynamics simulations have been used to determine the thermal conductivity in the presence of metallic spherical nanoparticles of Ag. Furthermore, as system temperature rises, thermal conductivity rises as well. It has been calculated how likely it is to find a particle at a certain distance using the radial distribution function. Atom movements are amplified, according to mean square displacement investigations for the liquid and solid phases in base fluids. The rectified heat current correlation function makes a prediction regarding the thermal conductivity. For stability analysis, total kinetic energy, average running kinetic energy, potential energy, and total energy have all been investigated.

Graphical abstract

a Geometric structure of a water molecule in SPC/E model and an Ag nanoparticle, b Initial and intermediate snapshots of the model of a Spherical Ag nanoparticle in water with periodic boundary conditions in 3 dimensions. The red, yellow, and blue dots correspond to hydrogen, oxygen, and Ag atoms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request. The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request].

References

  1. S.U.S Choi, J.A. Eastman, ASME Int. Mech. Eng. Cong. Exposition 12–17 (1995)

  2. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  3. S.U.S. Choi, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  4. W. Evans, J. Fish, P. Keblinsk, J. Chem. Phys. 126, 154504 (2007)

    Article  ADS  Google Scholar 

  5. S.L. Krasnolutskii, V. Rudyak, J. Phys: conf. Series. 1105, 012147 (2018)

    Google Scholar 

  6. R. Chein, J. Chuang, Int. J. Therm. Sci. 46, 57–66 (2007)

    Article  Google Scholar 

  7. M.M. Ghosh, S. Roy, S.K. Pabi, S. Ghosh, J. Nanosci. Nanotech. 11, 2196–2207 (2011)

    Article  Google Scholar 

  8. R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transf. 55, 4063–4078 (2012)

    Article  Google Scholar 

  9. S. Bhanushali, N.N. Jason, P. Ghosh, A. Ganesh, G.P. Simon, W. Cheng, A.C.S. Appl, Mater. Interfaces 9, 18925–18935 (2017)

    Article  Google Scholar 

  10. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Int. J. Heat Mass Transf. 45, 855 (2002)

    Article  Google Scholar 

  11. M. Ghanbarpour, E. BitarafHaghigi, R. Khodabandeh, Exp Therm Fluid Sci. 53, 227–35 (2014)

    Article  Google Scholar 

  12. H. Akhavan-Zanjani, M. Saffar-Avval, M. Mansourkiaei, J Dispersion Sci Technol. 35, 1230–1240 (2014)

    Article  Google Scholar 

  13. I. Saxena, R.N. Pathak, V. Kumar, R. Devi, Int. J. Apply. Res. 1, 562–569 (2015)

    Google Scholar 

  14. M.N. Rashin, J. Hemalatha, Ultrasonics 54, 834–840 (2014)

    Article  Google Scholar 

  15. S.S. Kulkarni, U.V. Khadke, Indian J. Mater. Sci. 9582582, 1–6 (2016)

    Google Scholar 

  16. P. Mark, L. Nilsson, J. Phys. Chem. A 105(43), 9954–9960 (2001)

    Article  Google Scholar 

  17. A. Alkhwaji, S. Elbahloul, K.F.B.A. Bakar, M. ZulkiflyAbdullah, Int. J. Sci. Technol. Res. 9(08), 511–516 (2020)

    Google Scholar 

  18. LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. It was developed originally at Sandia National Laboratories, a US Department of Energy facility. LAMMPS is an open-source code, distributed freely under the terms of the GNU Public License Version 2 (GPLv2)

  19. W. Cui, Z. Shen, J. Yang, S. Wub, M. Baic, RSC Adv. 4, 55580–55589 (2014)

    Article  ADS  Google Scholar 

  20. S.A. Mirmohammadi, L. Shen, Y. Gan, Chem. Phys. Lette. 712, 44–53 (2018)

    Article  ADS  Google Scholar 

  21. P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  22. E.M. Achhal, H. Jabraoui, S. Zeroual, H. Loulija, A. Hasnaoui, S. Ouaskit, Adv. Powder Tech. 29, 2434–2439 (2018)

    Article  Google Scholar 

  23. I. Topal, J. Servantic, Chem. Phys. 512, 147–151 (2019)

    Article  Google Scholar 

  24. F. Jabbari, A. Rajabpour, S. Saedodin, Chem. Eng. Sci. 174, 67–81 (2017)

    Article  Google Scholar 

  25. H.J.C. Berendsen, J.P.M. Postma, W.F. VanGunsteren, A. Dinola, J. Chem. Phys. 81, 3684–3690 (1984)

    Article  ADS  Google Scholar 

  26. Q. Spreiter, M. Walter, J. Comp. Phys. 152, 102–119 (1999)

    Article  ADS  Google Scholar 

  27. A. Stukowski, Modell, Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Google Scholar 

  28. M.G. Muraleedharan, D.S. Sundaram, A. Henry, V. Yang, J. Phys.: Condensed Matter 29, 155302 (2017)

    ADS  Google Scholar 

  29. H. Zerradi, H. Loulijat, MOJ Appl. Bio Biomech. 2, 313–322 (2018)

    Google Scholar 

  30. R. Carbajal-Valdéz, A. Rodríguez-Juárez, J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Macias, J.L. Luna-Sánchez, Thermochimica Acta 671, 83–88 (2019)

    Article  Google Scholar 

  31. Y. Li, Y. Zhai, M. Ma, Z. Xuan, H. Wang, Int. Com. Heat Mass Transf. 122, 105181 (2021)

    Article  Google Scholar 

  32. A.K. Sopera, F. Bruni, M.A. Ricci, J. Chem. Phys. 106, 247 (1997)

    Article  ADS  Google Scholar 

  33. J. Navas et al., Eur. Phys. J. Appl. Phys. 78, 10901 (2017)

    Article  ADS  Google Scholar 

  34. X. Wang, D.W. Jing, Int. J. Heat Mass Transf. 128, 199–207 (2019)

    Article  Google Scholar 

  35. Y. Li, Y. Zhai, M. Ma, Z. Xuan, H. Wang, Int. J. Heat Mass Transf. 122, 105181 (2021)

    Article  Google Scholar 

  36. A. Mohebbi, J. Mol. Liq. 175, 51–58 (2012)

    Article  Google Scholar 

  37. A. Loya, J.L. Stair, G. Ren, Int. Nano Lett. 5, 1–7 (2015)

    Article  Google Scholar 

  38. P. Mark, L. Nilsson, J. Phys. Chem. A 105, 9954–9960 (2001)

    Article  Google Scholar 

  39. S.P. Shit, S. Pal, N.K. Ghosh, K. Sau, J. Mole, Structure 1239, 130525 (2021)

    Google Scholar 

  40. S. Sarkar, R.P. Selvam, J. Appl. Phys. 102, 074302 (2007)

    Article  ADS  Google Scholar 

  41. M.S. Izadkhah, S.Z. Heris, J. Therm. Anal. Calorim. 138, 623–631 (2019)

    Article  Google Scholar 

  42. M.S. Izadkhah, H. Erfan-Niya, S.Z. Heris, J. Therm. Anal. Calorim. 135, 581–595 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge a financial grant from P.R.G. and DST-PURSE University of Kalyani.

Author contribution

SP Shit: Conceptualization, Methodology, Software. N.K. Ghosh: Writing original draft. S Pal: Supervision, & editing. K Sau: Visualization, Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakti Pada Shit.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shit, S.P., Ghosh, N.K., Pal, S. et al. Particle size and temperature effects on thermal conductivity of aqueous Ag nanofluids: modelling and simulations using classical molecular dynamics. Eur. Phys. J. D 76, 238 (2022). https://doi.org/10.1140/epjd/s10053-022-00561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00561-w

Navigation