Skip to main content
Log in

Diffusion coefficients of dusty plasmas in electric field

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, the effects of normalized electric field (E*) on parallel diffusion coefficients (D||) and perpendicular diffusion coefficients (D) are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional strongly coupled dusty plasmas. The self-diffusion coefficients (DE) for three dimensions also have been calculated for the wide range of plasma Coulomb coupling (Γ) and Debye screening (κ) parameters with the various system sizes. The DE, D|| and D are investigated using the Einstein relation with EMD simulations. The effects of constant and varying normalized E* on D|| and D have been computed for the different system sizes. Simulation outcomes are outstanding in the combined effects of E* and κ and give well-matched DE, D||(E* = 0, 0.01) and D(E* = 0, 0.01) values at low-intermediate to large Γ with varying small-intermediate to large N. The D|| and D in the limit of varying E* values are accounted for an appropriate range Γ and κ parameters. At varying E* values, it is revealed that the D|| increases and D decreases with an increase in E*; however, it decreases with an increase in Γ but within statistical limits. The simple analytical temperature scaling law is tested for variation of scaled (Einstein frequency) DE, D||(E* = 0.01) and D(E* = 0.01). It has been shown that the present EMD simulations data obtained for the appropriate range of E* strength up to 0.01 ≤ E* ≤ 1.0 to understand the phase transitions, fundamental nature of E* linearity and anisotropy of dusty plasma systems.

Graphical abstract

Diffusion coefficients of dusty plasmas in electric field by using molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.].

References

  1. J.E. Martin, J. Odinek, T.H. Halsey, R. Kamien, Fluid Phys. Rev. E. 57, 756 (1998). https://doi.org/10.1002/adma.19930051004

    Article  ADS  Google Scholar 

  2. W. Tao, L. Xiangyang, X. Sa, L. Hui, M.-G. He, J. Therm. Sci. 31, 1076 (2022). https://doi.org/10.1007/s11630-022-1648-z

    Article  Google Scholar 

  3. P.K. Shukla, Phys. Plasmas. 8, 1791 (2001). https://doi.org/10.1063/1.1343087

    Article  ADS  Google Scholar 

  4. A. Shahzad, M.-G. He, Contrib. Plasma Phys. 52, 667 (2012). https://doi.org/10.1002/ctpp.201200002

    Article  ADS  Google Scholar 

  5. A. Shahzad, M.-G. He, Phys. Plasmas. 22, 123707 (2015). https://doi.org/10.1063/1.4938275

    Article  ADS  Google Scholar 

  6. A. Shahzad, M.A. Shakoori, M.-G. He, F. Ying, Phys. Plasmas. 26, 023704 (2019). https://doi.org/10.1063/1.5056261

    Article  ADS  Google Scholar 

  7. M. Chaudhuri, S.A. Khrapak, G.E. Morfill, Phys. Plasmas. 14, 054503 (2007). https://doi.org/10.1063/1.2724806

    Article  ADS  Google Scholar 

  8. R. Kompaneets, G.E. Morfill, A.V. Ivlev, Phys. Plasmas. 16, 043705 (2009). https://doi.org/10.1063/1.3112703

    Article  ADS  Google Scholar 

  9. A.V. Ivlev, M.H. Thoma, C. Räth, G. Joyce, G.E. Morfill, Phys. Rev. Lett. 106, 155001 (2011). https://doi.org/10.1103/PhysRevLett.106.155001

    Article  ADS  Google Scholar 

  10. D. Kana, C. Dietz, M.H. Thoma, Phys. Plasmas. 27, 103703 (2020). https://doi.org/10.1063/5.0010021

    Article  ADS  Google Scholar 

  11. A.V. Ivlev, G.E. Morfill, H.M. Thomas, C. Räth, G. Joyce, P. Huber, R. Kompaneets, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, T. Reiter, M. Turin, P. Vinogradov, Phys. Rev. Lett. 100, 095003 (2008). https://doi.org/10.1103/PhysRevLett.100.095003

    Article  ADS  Google Scholar 

  12. A.V. Ivlev, P.C. Brandt, G.E. Morfill, C. Räth, H.M. Thomas, G. Joyce, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, IEEE Trans. Plasma Sci. 38, 733 (2010). https://doi.org/10.1109/TPS.2009.2037716

    Article  ADS  Google Scholar 

  13. M. Schwabe, S.A. Khrapak, S.K. Zhdanov, M.Y. Pustylnik, C. Räth, M. Fink, M. Kretschmer, A.M. Lipaev, V.I. Molotkov, A.S. Schmitz, M.H. Thoma, A.D. Usachev, A.V. Zobnin, G.I. Padalka, V.E. Fortov, O.F. Petrov, H.M. Thomas, New J. Phys. 22, 083079 (2020). https://doi.org/10.1088/1367-2630/aba91b

    Article  ADS  Google Scholar 

  14. G.I. Sukhinin, A.V. Fedoseev, M.V. Salnikov, A. Rostom, M.M. Vasiliev, O.F. Petrov, Phys. Rev. E. 95, 063207 (2017). https://doi.org/10.1103/PhysRevE.95.063207

    Article  ADS  Google Scholar 

  15. G.I. Sukhinin, A.V. Fedoseev, M.V. Salnikov, Contrib. Plasma Phys. 56, 397 (2016). https://doi.org/10.1002/ctpp.201500128

    Article  ADS  Google Scholar 

  16. M. Rosenberg, Waves in a 1D electrorheological dusty plasma lattice. J. Plasma Phys. 81, 905810407 (2015). https://doi.org/10.1017/S0022377815000422

    Article  Google Scholar 

  17. M.A. Shakoori, M.-G. He, A. Shahzad, M. Khan, Plasma Phys. Rep. 48, 1023 (2022). https://doi.org/10.1134/S1063780X22100014

    Article  ADS  Google Scholar 

  18. M.A. Shakoori, M.-G He, A. Shahzad, M. Khan, Y. Zhang, Molecular Dynamics Study of Diffusion Coefficient for Low-Temperature Dusty Plasmas in the Presence of External Electric Fields, ed. by A. Shahzad and M.-G. He (IGI Global, 2022), pp. 63–84. https://doi.org/10.4018/978-1-7998-8398-2.ch004

  19. M.A. Shakoori, M.-G. He, A. Shahzad, M. Khan, Studies of Self Diffusion Coefficient in Electrorheological Complex Plasmas through Molecular Dynamics Simulations, ed. by A. Shahzad (Intech, London, 2021) https://doi.org/10.5772/intechopen.98854

  20. A. Shahzad, M. Kashif, T. Munir, M.-G. He, X. Tu, Phys. Plasmas. 27, 103702 (2020). https://doi.org/10.1063/5.0018537

    Article  ADS  Google Scholar 

  21. A. Shahzad, M.-G. He, S.I. Haider, Y. Feng, Phys. Plasmas. 24, 093701 (2017). https://doi.org/10.1063/1.4993992

    Article  ADS  Google Scholar 

  22. H. Ohta, S. Hamaguchi, Phys. Plasmas. 7, 4506 (2000). https://doi.org/10.1063/1.1316084

    Article  ADS  Google Scholar 

  23. J. Daligault, Phys. Rev. Lett. 108, 225004 (2012). https://doi.org/10.1103/PhysRevLett.108.225004

    Article  ADS  Google Scholar 

  24. J. Daligault, Phys. Rev. E. 86, 047401 (2012). https://doi.org/10.1103/PhysRevE.86.047401

    Article  ADS  Google Scholar 

  25. O.S. Vaulina, S.V. Vladimirov, O.F. Petrov, V.E. Fortov, Phys. Plasmas. 11, 3234 (2004). https://doi.org/10.1063/1.1737742

    Article  ADS  Google Scholar 

  26. O.S. Vaulina, I.E. Dranzhevski, Phys. Scr. 73, 577 (2006). https://doi.org/10.1088/0031-8949/73/6/009

    Article  ADS  Google Scholar 

  27. O.S. Vaulina, X.G. Adamovich, O.F. Petrov, V.E. Fortov, Phys. Rev. E. 77, 066403 (2008). https://doi.org/10.1103/physreve.77.066403

    Article  ADS  Google Scholar 

  28. O.S. Vaulina, S.V. Vladimirov, Phys. Plasmas. 9, 835 (2002). https://doi.org/10.1063/1.1449888

    Article  ADS  Google Scholar 

  29. K.N. Dzhumagulova, T.S. Ramazanov, R.U. Masheeva, Contrib. Plasma Phys. 52, 182 (2012). https://doi.org/10.1002/ctpp.201100070

    Article  ADS  Google Scholar 

  30. A. Shahzad, M.-G. He, K. He, Phys. Scr. 87, 035501 (2013). https://doi.org/10.1088/0031-8949/87/03/035501

    Article  ADS  Google Scholar 

  31. A. Shahzad, M.-G. He, Phys. Scr. 86, 015502 (2012). https://doi.org/10.1088/0031-8949/86/01/015502

    Article  ADS  Google Scholar 

  32. A. Shahzad, A. Aslam, M.-G. He, Radiat. Eff. Defects Solids. 169, 931 (2014). https://doi.org/10.1080/10420150.2014.968852

    Article  ADS  Google Scholar 

  33. A. Shahzad, A. Aslam, M. Sultana, M.-G. He, IOP Conf. Ser. Mater. Sci. Eng. 60, 012014 (2014). https://doi.org/10.1088/1757-899X/60/1/012014

  34. Y. Feng, J. Goree, B. Liu, E. G. D. Cohen, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 84, 046412 (2011). https://doi.org/10.1103/PhysRevE.84.046412

  35. A. Shahzad, M.-G. He, Plasma Sci. Technol. 14, 771 (2012). https://doi.org/10.1088/1009-0630/14/9/01

    Article  Google Scholar 

  36. M. Begum, N. Das, IOSR J. Appl. Phys. 8, 49 (2016). https://doi.org/10.9790/4861- 0806024954

  37. K.N. Dzhumagulova, T.S. Ramazanov, R.U. Masheeva, Phys. Plasmas. 20, 113702 (2013). https://doi.org/10.1063/1.4832016

    Article  ADS  Google Scholar 

  38. T.S. Strickler, T.K. Langin, P. McQuillen, J. Daligault, T.C. Killian, Phys. Rev. X. 6, 021021 (2016). https://doi.org/10.1103/PhysRevX.6.021021

    Article  Google Scholar 

  39. D.C. Rapaport, The Art of Molecular Dynamics Simulation, Secon Edit. (Cambridge University press, New York, 2004)

  40. Q. Spreiter, M. Walter, J. Comput. Phys. 152, 102–119 (1999). https://doi.org/10.1006/jcph.1999.6237

    Article  ADS  Google Scholar 

  41. A. Shahzad, M.-G. He, Phys. Plasmas 19, 083707 (2012). https://doi.org/10.1063/1.4748526

    Article  ADS  Google Scholar 

  42. S.D. Baalrud, J. Daligault, Phys. Rev. E 91, 063107 (2015). https://doi.org/10.1103/PhysRevE.91.063107

    Article  ADS  Google Scholar 

  43. R. Clark, M. Von Domaros, A.J.S. Mcintosh, A. Luzar, B. Kirchner, T. Welton, J. Chem. Phys. 151, 164503 (2019). https://doi.org/10.1063/1.5129367

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Zhang and M. Khan for help in revising the manuscript and also like to thank Dr. X. D. Zhang at the Network Information Center of Xi’an Jiaotong University for supporting the High-Performance Computing (HPC) platform and HPC Cluster of the National Centre for Physics (NCP) Islamabad for the allocation of computational power to check and run our MD code.

Funding

This work was supported by the National Science Fund for Distinguished Young Scholars of China (No. 51525604) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51721004).

Author information

Authors and Affiliations

Authors

Contributions

M. A. Shakoori performed calculations and wrote the main text, and M-G. He and A. Shahzad analyzed, reviewed and supervised.

Corresponding author

Correspondence to Maogang He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest relevant to financial or non-financial that could influence the manuscript outcomes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakoori, M.A., He, M. & Shahzad, A. Diffusion coefficients of dusty plasmas in electric field. Eur. Phys. J. D 76, 227 (2022). https://doi.org/10.1140/epjd/s10053-022-00553-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00553-w

Navigation