Skip to main content

Numerical Understanding of Thermal Properties of Dusty Plasmas

  • Chapter
  • First Online:
Thin Film and Flexible Thermoelectric Generators, Devices and Sensors
  • 471 Accesses

Abstract

Thermal properties of strongly coupled complex dusty plasmas (SCCDPs) are calculated by using improved method of homogeneous nonequilibrium molecular dynamics (HNEMD) simulations, expressed by Yukawa potential, in the canonical ensemble (NVT). The nonlinear effects, under the action of variable external force field strengths, are computed for three-dimensional (3D) SCCDPs. New results for thermal conductivity λ0 with appropriate normalization (Einstein’s frequency ωE) are measured for a wide range of plasma coupling (1 ≤ Γ ≤ 300) and screening strength (1 ≤ κ ≤ 4). Our results of normalized thermal conductivity depend on both Coulomb coupling Γ and screening κ parameters and it is demonstrated that the minimum value of λmin shifts toward higher Γ by an increase in κ, as expected and confirmed in an earlier work. The present results obtained through HNEMD technique are compared with the earlier 3D nonequilibrium molecular dynamics (NEMD), equilibrium molecular dynamics (EMD), inhomogeneous NEMD results, and theoretical predictions. The presented results of thermal conductivity and nonlinear behavior of SCCDPs have a satisfactory agreement with the earlier used results. Lattice correlation (Ψ) and energies for varying plasma parameters (Γ, κ) have confirmed the three phases as nonideal gaseous-like, liquid-like, and strongly coupled (crystalline structure) complex plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Complex (dusty) plasmas: Current status, open issues, perspectives. Phys. Rep. 421, 1–104 (2005)

    Article  Google Scholar 

  2. A. Shahzad, M.-G. He, Thermal conductivity of three dimensional Yukawa liquids (dusty plasma). Contrib. Plasma Physics 52, 667–675 (2012)

    Article  Google Scholar 

  3. A. Shahzad, M.-G. He, Interaction contributions in thermal conductivity of three-dimensional complex liquids. AIP Conf. Proc. 1547, 173 (2013)

    Article  CAS  Google Scholar 

  4. A. Shahzad, Impact of Thermal Conductivity on Energy Technologies (InTech, Rijeka: Croatia, 2018). https://doi.org/10.5772/intechopen.72471

    Book  Google Scholar 

  5. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. (Springer verlag, New York, 2010)

    Google Scholar 

  6. A. Shahzad, M.-G. He, Diffusion motion of two-dimensional weakly coupled complex (dusty) plasmas. Phys. Scr. 87, 035501 (2013)

    Article  CAS  Google Scholar 

  7. G.J. Kalman, J.M. Rommel, K. Blagoev, Strongly Coupled Coulomb Systems (Plenum, New York, 1998)

    Book  Google Scholar 

  8. R.L. Merlino, j.A. Goree, Dusty plasma in laboratory, industry, and space. Phys. Today 57, 32–38 (2004)

    Article  CAS  Google Scholar 

  9. R.L. Merlino, A Dusty Plasma Is an Ionized Gas Containing Dust Particles Plasma Physics Applied (2006), pp. 73–110

    Google Scholar 

  10. Arp, O.,Block, D., and Piel, Alexander, Dust coulomb balls: Three-dimensional plasma crystals. PRL 93, 165004 (2004)

    Article  Google Scholar 

  11. A. Melzer, M. Himpel, C. Carsten Killer, M. Mulsow, Stereoscopic imaging of dusty plasmas. Aust. J. Plant Physiol. 82, 615820102 (2016)

    Google Scholar 

  12. M. Slimullah, M.R. Amin, M. Salahuddin, A.R. Chowdhury, Ultra-low-frequency electrostatic modes in a magnetized dusty plasma. Phys. Scr. 58, 76 (1998)

    Article  Google Scholar 

  13. A. Shahzad, M.-G. He, Homogeneous nonequilibrium molecular dynamics evaluation of thermal conductivity in 2D Yukawa liquids. Int. J. Thermophys. 36, 2565 (2015)

    Article  CAS  Google Scholar 

  14. B. Liu, J. Goree, Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett. 100, 055003 (2008)

    Article  Google Scholar 

  15. A. Shahzad, M.G. He, Thermoelectrics for power generation-a look at trends in the technology, in Thermal Conductivity and Non-Newtonian Behavior of Complex Plasma Liquids, ed. by D. M. Nikitin , (InTech, Rijeka, Croatia, 2016). https://doi.org/10.5772/65563Chp 13

    Chapter  Google Scholar 

  16. A. Shahzad, M.G. He, Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids. Physic. Plasmas 22(12), 123707 (2015). https://doi.org/10.1063/1.4938275

    Article  CAS  Google Scholar 

  17. A. Shahzad, M.-G. He, Thermal conductivity calculation of complex (dusty) plasmas. Physic. Plasmas 19(8), 083707 (2012). https://doi.org/10.1063/1.4748526

    Article  CAS  Google Scholar 

  18. A. Shahzad, M.-G. He, Structural order and disorder in strongly coupled Yukawa liquids. Physic. Plasmas 23, 093708 (2016). https://doi.org/10.1063/1.4963390

    Article  CAS  Google Scholar 

  19. A. Shahzad, S.I. Haider, M. Kashif, M.S. Shifa, T. Munir, M.-G. He, Thermal conductivity of complex plasmas using novel Evan-Gillan approach. Commun. Theor. Phys. 69, 704–710 (2018)

    Article  CAS  Google Scholar 

  20. A. Kinaci, J.B. Haskins, C. Tahir, On calculation of thermal conductivity from Einstein relation in equilibrium MD. Phys.Chem 137, 01410 (2012)

    Google Scholar 

  21. D.J. Evans, G.P. Morriss, Statistical Mechanics of Non-equilibrium Liquids (London Academic press, 1990)

    Google Scholar 

  22. A. Shahzad, S. Maryam, A. Arfa, M.-G. He, Thermal conductivity measurements of 2D complex liquids using nonequilibrium molecular dynamics simulations. Appl Sci Technol (IBCAST), 11th International Bhurban Conference, Jan. 14–18, Proceeding of the IEEE Transaction 1, 212–217 (2014)

    Google Scholar 

  23. Toukmaji, A. Y., Board, Jr. John. A, Ewald summation techniques in perspective: A survey. Comput. Phys. Commun. 95, 73–92 (1996)

    Article  Google Scholar 

  24. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov, Dusty plasmas. Physics – Uspekhi 47, 447–492 (2004)

    Article  CAS  Google Scholar 

  25. A. Shahzad, M.-G. He, Thermodynamics characteristics of dusty plasma by using molecular dynamics simulations. Plasma Sci. Technol 14, 771–777 (2012)

    Article  CAS  Google Scholar 

  26. A. Shahzad, M.-G. He, Calculations of thermal conductivity of complex (dusty) plasmas using homogenous nonequilibrium molecular simulations. Radiat Eff Defects Solids 170(9), 758–770 (2015). https://doi.org/10.1080/10420150.2015.1108316

    Article  CAS  Google Scholar 

  27. G. Salin, J.-M. Caillol, Equilibrium molecular dynamics simulations of the transport coefficients of the Yukawa one component plasma. Phys Plasmas 10, 1220 (2003)

    Article  CAS  Google Scholar 

  28. Z. Donkó, P. Hartmann, Thermal conductivity of strongly coupled Yukawa liquids. Phys. Rev. E 69, 016405 (2004). https://doi.org/10.1103/PhysRevE.69.016405

    Article  CAS  Google Scholar 

  29. G. Faussurier, M.S. Murillo, Gibbs-Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids. Phys. Rev. E 67, 046404 (2003)

    Article  CAS  Google Scholar 

  30. C. Pierleoni, G. Ciccotti, B. Bernu, Thermal conductivity of the classical one-component plasma by nonequilibrium molecular dynamics. Europhys. Lett. 4, 1115 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Z. Donkó (Hungarian Academy of Sciences) for providing his thermal conductivity data of Yukawa Liquids for the comparisons with our simulation results, and for useful discussions. We are grateful to the National Advanced Computing Center of National Center of Physics (NCP), Pakistan, for allocating computer time to test and run our MD code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahzad, A., Mao-Gang, H. (2021). Numerical Understanding of Thermal Properties of Dusty Plasmas. In: Skipidarov, S., Nikitin, M. (eds) Thin Film and Flexible Thermoelectric Generators, Devices and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-45862-1_12

Download citation

Publish with us

Policies and ethics