Skip to main content
Log in

Strong-field QED experiments using the BELLA PW laser dual beamlines

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The petawatt (PW) laser facility of the Berkeley Lab Laser Accelerator (BELLA) Center has recently commissioned its second laser pulse transport line. This new beamline can be operated in parallel with the first beamline and enables strong-field quantum electrodynamics (SF-QED) experiments at BELLA. In this paper, we present an overview of the upgraded BELLA PW facility with a SF-QED experimental layout in which intense laser pulses collide with GeV-class laser-wakefield-accelerated electron beams. We present simulation results showing that experiments will allow the study of laser-particle interactions from the classical to the SF-QED regime with a nonlinear quantum parameter of up to \(\chi \sim \)2. In addition, we show that experiments will enable the study and production of GeV-class, mrad-divergence positron beams via the Breit–Wheeler process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No data other than what is required in the manuscript is required to reproduce the calculations. There is no experimental data.]

References

  1. A. Di Piazza, C. Müller, K. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84(3), 1177 (2012)

    ADS  Google Scholar 

  2. P. Zhang, S.S. Bulanov, D. Seipt, A.V. Arefiev, A.G. Thomas, Relativistic plasma physics in supercritical fields. Phys. Plasmas 27, 50601 (2020)

    ADS  Google Scholar 

  3. A. Gonoskov, T. Blackburn, M.Marklund, S.S. Bulanov, Charged particle motion and radiation in strong electromagnetic fields. Preprint arXiv:2107.02161 (2021)

  4. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson, Advances in qed with intense background fields. Preprint arXiv:2203.00019 (2022)

  5. C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Observation of nonlinear effects in compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996)

    ADS  Google Scholar 

  6. D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. Mc Donald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 1626–1629 (1997)

    ADS  Google Scholar 

  7. J.M. Cole, K.T. Behm, E. Gerstmayr, T.G. Blackburn, J.C. Wood, C.D. Baird, M.J. Duff, C. Harvey, A. Ilderton, A.S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C.D. Murphy, K. Poder, C.P. Ridgers, G.M. Samarin, G. Sarri, D.R. Symes, A.G.R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, S.P.D. Mangles, Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018)

    Google Scholar 

  8. K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C.D. Baird, K. Behm, S. Bohlen, J.M. Cole, D.J. Corvan, M. Duff, E. Gerstmayr, C.H. Keitel, K. Krushelnick, S.P. Mangles, P. McKenna, C.D. Murphy, Z. Najmudin, C.P. Ridgers, G.M. Samarin, D.R. Symes, A.G. Thomas, J. Warwick, M. Zepf, Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 31004 (2018)

    Google Scholar 

  9. C.N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C.F. Chanteloup, E.A. Chowdhury, A. Galvanauskas, L.A. Gizzi, D.I. Hillier, N.W. Hopps, Y. Kato, E.A. Khazanov, R. Kodama, J. Limpert, J. Ma, C.H. Nam, D. Neely, D. Papadopoulos, R.R. Penman, L. Qian, J.J. Rocca, A.A. Shaykin, C.W. Siders, C. Spindloe, S. Szatmári, G.M. Trines, J. Zhu, J.D. Zuegel, Petawatt and exawatt lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019)

    Google Scholar 

  10. A. Gonoskov, A. Bashinov, S. Bastrakov, E. Efimenko, A. Ilderton, A. Kim, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X 7, 41003 (2017)

    Google Scholar 

  11. J. Magnusson, A. Gonoskov, M. Marklund, T.Z. Esirkepov, J.K. Koga, K. Kondo, M. Kando, S.V. Bulanov, G. Korn, C.G.R. Geddes, C.B. Schroeder, E. Esarey, S.S. Bulanov, Multiple colliding laser pulses as a basis for studying high-field high-energy physics. Phys. Rev. A 100, 063404 (2019)

    ADS  Google Scholar 

  12. G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, Z. Najmudin, D. Symes, A.G.R. Thomas, M. Yeung, Z. Zhao, M. Zepf, Ultrahigh brilliance multi-mev \(\gamma \)-ray beams from nonlinear relativistic thomson scattering. Phys. Rev. Lett. 113, 224801 (2014)

    ADS  Google Scholar 

  13. X.-L. Zhu, Y. Tong-Pu, Z.-M. Sheng, Y. Yin, E. Turcu, A. Pukhov, Dense gev electron-positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun. 7, 12 (2016)

    Google Scholar 

  14. Y. He, T. Blackburn, T. Toncian, A. Arefiev, Dominance of \(\gamma \)-\(\gamma \) electron-positron pair creation in a plasma driven by high-intensity lasers. Commun. Phys. 4, 06 (2021)

    Google Scholar 

  15. C. Benedetti, S.S. Bulanov, E. Esarey, C.G.R. Geddes, A.J. Gonsalves, A. Huebl, R. Lehe, K. Nakamura, C.B. Schroeder, D. Terzani, J. van Tilborg, M. Turner, J.L. Vay, T. Zhou, F. Albert, J. Bromage, E.M. Campbell, D.H. Froula, J.P. Palastro, J. Zuegel, D. Bruhwiler, N.M. Cook, B. Cros, M.C. Downer, M. Fuchs, B.A. Shadwick, S.J. Gessner, M.J. Hogan, S.M. Hooker, C. Jing, K. Krushelnick, A.G.R. Thomas, W.P. Leemans, A.R. Maier, J. Osterhoff, K. Poder, M. Thevenet, W.B. Mori, M. Palmer, J.G. Power, N. Vafaei-Najafabadi, Linear collider based on laser-plasma accelerators. arXiv:2203.0836 [physics.acc-ph] (2022)

  16. P. Musumeci, C. Boffo, S.S. Bulanov, I. Chaikovska, A.F. Golfe, S. Gessner, J. Grames, R. Hessami, Y. Ivanyushenkov, A. Lankford, G. Loisch, G. Moortgat-Pick, S. Nagaitsev, S. Riemann, P. Sievers, C. Tenholt, K. Yokoya, Positron sources for future high energy physics colliders. arXiv:2204.13245 (2022)

  17. V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Soviet Laser Res. 6, 497–617 (1985)

    Google Scholar 

  18. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  19. F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Zeitschrift für Physik 69(11–12), 742–764 (1931)

    ADS  MATH  Google Scholar 

  20. W. Heisenberg, H. Euler, Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik 98, 714–732 (1936)

    ADS  MATH  Google Scholar 

  21. S.A. Olausen, V.M. Kaspi, The McGill magnetar catalog. Astrophys. J. Suppl. Ser. 212(1), 6 (2014)

    ADS  Google Scholar 

  22. B. Crinquand, B. Cerutti, A. Philippov, K. Parfrey, G. Dubus, Multidimensional simulations of ergospheric pair discharges around black holes. Phys. Rev. Lett. 124, 145101 (2020)

    ADS  MathSciNet  Google Scholar 

  23. J. Reinhardt, W. Greiner, Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40(3), 219–295 (1977)

    ADS  Google Scholar 

  24. V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M.J. Hogan, A. Pukhov, L.O. Silva, G. White, Prospect of studying nonperturbative QED with beam–beam collisions. Phys. Rev. Lett. 122, 190404 (2019)

    ADS  Google Scholar 

  25. U.I. Uggerhøj, The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys. 77, 1131–1171 (2005)

    ADS  Google Scholar 

  26. T.N. Wistisen, A. Di Piazza, H.V. Knudsen, U.I. Uggerhøj, Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. 9, 795 (2018)

    ADS  Google Scholar 

  27. T.N. Wistisen, A. Di Piazza, C.F. Nielsen, A.H. Sørensen, U.I. Uggerhøj, Quantum radiation reaction in aligned crystals beyond the local constant field approximation. Phys. Rev. Res. 1, 33014 (2019)

    Google Scholar 

  28. H. Abramowicz, U.H. Acosta, M. Altarelli, R. Assmann, Z. Bai, T. Behnke, Y. Benhammou, T. Blackburn, S. Boogert, O. Borysov et al., Conceptual design report for the LUXE experiment. Eur. Phys. J. Spec. Top. 230, 2445–2560 (2021)

    Google Scholar 

  29. E. Turcu, F. Negoita, D. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M. Cernaianu, M. Tataru, P. Ghenuche, D. Stutman, A. Boianu, M. Risca, M. Toma, C. Petcu, G. Acbas, S. Yoffe, A. Noble, B. Ersfeld, N. Zamfir, High field physics and qed experiments at eli-np. Roman. Rep. Phys. 68, S145 (2016)

    Google Scholar 

  30. E. Turcu, B. Shen, D. Neely, G. Sarri, K. Tanaka, P. Mckenna, S. Mangles, Y. Tong-Pu, L. Wen, X.-L. Zhu, Y. Yin, Quantum electrodynamics experiments with colliding petawatt laser pulses. High Power Laser Sci. Eng. 7, 01 (2019)

    Google Scholar 

  31. X. Wang, X. Liu, X. Lu, J. Chen, Y. Long, W. Li, H. Chen, X. Chen, P. Bai, Y. Li et al., 13.4 fs, 0.1 hz opcpa front end for the 100 pw-class laser facility. Ultrafast Sci. 2022, 9894348 (2022)

    ADS  Google Scholar 

  32. C.N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C.F. Chanteloup, E.A. Chowdhury, A. Galvanauskas, L.A. Gizzi, J. Hein, D.I. Hillier et al., Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019)

    Google Scholar 

  33. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006)

    Google Scholar 

  34. W.P. Leemans, A.J. Gonsalves, H.S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, C. Tóth, J. Daniels, D.E. Mittelberger, S.S. Bulanov, J.L. Vay, C.G. Geddes, E. Esarey, Multi-Gev electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014)

    ADS  Google Scholar 

  35. S. Steinke, J. van Tilborg, C. Benedetti, C.G.R. Geddes, C.B. Schroeder, J. Daniels, K.K. Swanson, A.J. Gonsalves, K. Nakamura, N.H. Matlis, B.H. Shaw, E. Esarey, W.P. Leemans, Multistage coupling of independent laser-plasma accelerators. Nature 530(7589), 190–193 (2016)

    ADS  Google Scholar 

  36. K. Nakamura, H.-S. Mao, A.J. Gonsalves, H. Vincenti, D.E. Mittelberger, J. Daniels, A. Magana, C. Toth, W.P. Leemans, Diagnostics, control and performance parameters for the bella high repetition rate petawatt class laser. IEEE J. Quant. Electron. 53(4), 1–21 (2017)

    Google Scholar 

  37. A.J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T.C. De Raadt, S. Steinke, J.H. Bin, S.S. Bulanov, J. Van Tilborg, C.G. Geddes, C.B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.P. Leemans, Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 84801 (2019)

    ADS  Google Scholar 

  38. S. Hakimi, L. Obst-Huebl, A. Huebl, K. Nakamura, S.S. Bulanov, S. Steinke, W.P. Leemans, Z. Kober, T.M. Ostermayr, T. Schenkel, A.J. Gonsalves, J.-L. Vay, J.V. Tilborg, C. Toth, C.B. Schroeder, E. Esarey, C.G. Geddes, Laser-solid interaction studies enabled by the new capabilities of the ip2 bella pw beamline. Phys. Plasmas, vol. in press

  39. S. Steinke, J. van Tilborg, C. Benedetti, C.G.R. Geddes, J. Daniels, K.K. Swanson, A.J. Gonsalves, K. Nakamura, B.H. Shaw, C.B. Schroeder, E. Esarey, W.P. Leemans, Staging of laser-plasma accelerators. Phys. Plasmas 23(5), 056705 (2016)

    ADS  Google Scholar 

  40. R.J. Shalloo, C. Arran, A. Picksley, A. Von Boetticher, L. Corner, J. Holloway, G. Hine, Ô. Jonnerby, H.M. Milchberg, C. Thornton, R. Walczak, S.M. Hooker, J. Jonnerby, H.M. Milchberg, C. Thornton, R. Walczak, S.M. Hooker, Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens. Phys. Rev. Acceler. Beams 22(4), 41302 (2019)

    ADS  Google Scholar 

  41. B. Miao, L. Feder, J.E. Shrock, A. Goffin, H.M. Milchberg, Optical guiding in meter-scale plasma waveguides. Phys. Rev. Lett. 125(7), 074801 (2020)

    ADS  Google Scholar 

  42. T. Blackburn, Radiation reaction in electron-beam interactions with high-intensity lasers. Rev. Mod. Plasma Phys. 4, 12 (2020)

    ADS  Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, vol. 3 of The Course of Theoretical Physics (Butterworth-Heinemann, Oxford, 1981)

    Google Scholar 

  44. S.V. Bulanov, T.Z. Esirkepov, M. Kando, J.K. Koga, S.S. Bulanov, Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions). Phys. Rev. E 84, 11 (2011)

    Google Scholar 

  45. T.Z. Esirkepov, S.V. Bulanov, Paradoxical stabilization of forced oscillations by strong nonlinear friction. Phys. Lett. A 381, 2559–2564 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  46. A. Gonoskov, M. Marklund, Radiation-dominated particle and plasma dynamics. Phys. Plasmas 25, 93109 (2018)

    Google Scholar 

  47. R. Ekman, T. Heinzl, A. Ilderton, Exact solutions in radiation reaction and the radiation-free direction. New J. Phys. 23, 055001 (2021)

    ADS  MathSciNet  Google Scholar 

  48. C. Benedetti, C. Schroeder, T. Mehrling, B. Djordjevic, S. Bulanov, C. Geddes, E. Esarey, W. Leemans, “INF &RNO Modeling of 10 GeV-Class Electron Beams from a Laser-Plasma Accelerator Driven by the BELLA Laser,” in 2018 IEEE Advanced Accelerator Concepts Workshop (AAC), pp. 1–5, IEEE, (aug 2018)

  49. C. Benedetti, C.B. Schroeder, E. Esarey, C.G.R. Geddes, W.P. Leemans, Efficient modeling of laser-plasma accelerators with INF &RNO. AIP Conf. Proc. 1299(1), 250–255 (2010)

    ADS  Google Scholar 

  50. C. Benedetti, C.B. Schroeder, C.G.R. Geddes, E. Esarey, W.P. Leemans, An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators. Plasma Phys. Controlled Fusion 60, 14002 (2017)

    Google Scholar 

  51. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    ADS  Google Scholar 

  52. C. Benedetti, C.B. Schroeder, C.G.R. Geddes, E. Esarey, W.P. Leemans, Efficient modeling of laser-plasma accelerator staging experiments using inf &rno. AIP Conf. Proc. 1812(1), 050005 (2017)

    Google Scholar 

  53. D.J. Spence, S.M. Hooker, Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401 (2000)

    ADS  Google Scholar 

  54. N.A. Bobrova, P.V. Sasorov, C. Benedetti, S.S. Bulanov, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, Laser-heater assisted plasma channel formation in capillary discharge waveguides. Phys. Plasmas 20, 020703 (2013)

    ADS  Google Scholar 

  55. C.V. Pieronek, A.J. Gonsalves, C. Benedetti, S.S. Bulanov, J. van Tilborg, J.H. Bin, K.K. Swanson, J. Daniels, G.A. Bagdasarov, N.A. Bobrova, V.A. Gasilov, G. Korn, P.V. Sasorov, C.G.R. Geddes, C.B. Schroeder, W.P. Leemans, E. Esarey, Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Phys. Plasmas 27, 093101 (2020)

    ADS  Google Scholar 

  56. A.J. Gonsalves, K. Nakamura, C. Benedetti, C.V. Pieronek, S. Steinke, J.H. Bin, S.S. Bulanov, J. van Tilborg, C.G.R. Geddes, C.B. Schroeder, J. Daniels, C. Tóth, L. Obst-Huebl, R.G.W. van den Berg, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.P. Leemans, E. Esarey, Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Phys. Plasmas 27, 053102 (2020)

    ADS  Google Scholar 

  57. T.G. Blackburn, A.J. MacLeod, B. King, From local to nonlocal: higher fidelity simulations of photon emission in intense laser pulses. New J. Phys. 23, 085008 (2021)

    ADS  MathSciNet  Google Scholar 

  58. T.G. Blackburn, B. King, Higher fidelity simulations of nonlinear Breit-Wheeler pair creation in intense laser pulses. Eur. Phys. J. C 82(1), 44 (2022)

    ADS  Google Scholar 

  59. https://github.com/tgblackburn/ptarmigan T. G. Blackburn, Ptarmigan (2021)

  60. Y.I. Salamin, Fields of a Gaussian beam beyond the paraxial approximation. Appl. Phys. B 86(2), 319–326 (2007)

    ADS  Google Scholar 

  61. S.S. Bulanov, C.B. Schroeder, E. Esarey, W.P. Leemans, Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A 87, 062110 (2013)

    ADS  Google Scholar 

  62. C.N. Harvey, A. Ilderton, B. King, Testing numerical implementations of strong-field electrodynamics. Phys. Rev. A 91(1), 013822 (2015)

    ADS  Google Scholar 

  63. V. Dinu, C. Harvey, A. Ilderton, M. Marklund, G. Torgrimsson, Quantum radiation reaction: from interference to incoherence. Phys. Rev. Lett. 116, 044801 (2016)

    ADS  Google Scholar 

  64. A. Di Piazza, M. Tamburini, S. Meuren, C.H. Keitel, Implementing nonlinear Compton scattering beyond the local-constant-field approximation. Phys. Rev. A 98, 012134 (2018)

    ADS  Google Scholar 

  65. T.G. Blackburn, D. Seipt, S.S. Bulanov, M. Marklund, Benchmarking semiclassical approaches to strong-field QED: nonlinear Compton scattering in intense laser pulses. Phys. Plasmas 25(8), 83108 (2018)

    Google Scholar 

  66. A. Ilderton, B. King, D. Seipt, Extended locally constant field approximation for nonlinear compton scattering. Phys. Rev. A 99, 042121 (2019)

    ADS  Google Scholar 

  67. T.G. Blackburn, D. Seipt, S.S. Bulanov, M. Marklund, Radiation beaming in the quantum regime. Phys. Rev. A 101(1), 1–8 (2020)

    Google Scholar 

  68. T. Heinzl, B. King, A.J. Macleod, Locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A 102, 063110 (2020)

    ADS  MathSciNet  Google Scholar 

  69. F. Mackenroth, A. Di Piazza, Nonlinear trident pair production in an arbitrary plane wave: a focus on the properties of the transition amplitude. Phys. Rev. D 98, 116002 (2018)

    ADS  Google Scholar 

  70. V. Dinu, G. Torgrimsson, Trident pair production in plane waves: coherence, exchange, and spacetime inhomogeneity. Phys. Rev. D 97, 036021 (2018)

    ADS  MathSciNet  Google Scholar 

  71. B. King, A.M. Fedotov, Effect of interference on the trident process in a constant crossed field. Phys. Rev. D 98(1), 16005 (2018)

    ADS  Google Scholar 

  72. C. Benedetti, F. Rossi, C.B. Schroeder, E. Esarey, W.P. Leemans, Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators. Phys. Rev. E 92, 023109 (2015)

    ADS  Google Scholar 

  73. W. Lu, M. Tzoufras, C. Joshi, F.S. Tsung, W.B. Mori, J. Vieira, R.A. Fonseca, L.O. Silva, Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, and used the computational facilities at the National Energy Research Scientific Computing Center (NERSC). We acknowledge helpful discussions with T. Blackburn regarding the ptarmigan code. The contributions from W. P. Leemans were made prior to his 2019 departure from LBNL to DESY.

Author information

Authors and Affiliations

Authors

Contributions

MT lead the experimental design effort and described worked on the installation and commissioning of BELLA PW second beamline together with AJG and KN. SSB performed the electron beam-laser pulse interaction simulations for this manuscript and provided the theoretical SF-QED paper discussion. CB simulated and optimized the laser wakefield accelerated electron beams. WPL was involved in the initial design and realization of the BELLA PW second beamline project. JvT, CBS, CGRG and EE provided input at all stages of the manuscript preparation and coordinated and supervised the efforts.

Corresponding author

Correspondence to M. Turner.

Appendix: Idealized LWFA stages in the Quasi-linear and bubble regime

Appendix: Idealized LWFA stages in the Quasi-linear and bubble regime

In the following, we describe the details of the idealized LWFA stages discussed in Sect. 5.

For the idealized stage in the quasi-linear regime (see black dotted lines in Fig. 4), we considered an LWFA driven by a super-matched (see Ref. [72] for details on the definition) laser pulse with \(a_0=1.6\), \(k_p w_0=4\), and \(k_p c T_{fwhm}=2.12\) (Gaussian longitudinal profile). Here, \(k_p=(4\pi n_0 e^2/mc^2)^{1/2}\) is the plasma wavenumber. The central laser wavelength is 800 nm. The operational density is specified once the laser energy is specified and is given by \(n_0(\hbox {cm}^{-3})\simeq 7.14\times 10^{17} (U_1 (J))^{-2/3}\). To guide the laser a plasma with a parabolic transverse density profile, \(R_m=w_0\) is used.

For the stage operating in the bubble regime (see green dashed lines in Fig. 4), laser driver is bi-Gaussian and its intensity is such that \(a_0=4.5\); furthermore, laser focal spot size \(w_{\textrm{0}}\) and pulse length \(\tau \) are chosen according to the theory in Ref. [73] (i.e., \(k_p w_0=2\sqrt{a_0}\), and \(cT_{fwhm}=(2/3)w_0\)), and the central laser wavelength is 800 nm. As before, the operational density of the stage is specified once the laser energy is specified and is given by \(n_0(\hbox {cm}^{-3})\simeq 7.02\times 10^{18} (U_1 (J))^{-2/3}\). Note that, for a given laser energy, and for the parameters considered here, the density of a stage operating in the quasi-linear regime is about an order of magnitude lower compared to the one of a stage operating in the bubble regime. Due to the longer dephasing and depletion lengths at lower densities, the energy gain provided by a quasi-linear stage is generally larger than that provided by a stage operating in the bubble regime.

In both the quasi-linear and bubble stages, the initial electron beam is chosen to experience \(\sim \)75% of the maximum accelerating field (for the stage in the bubble regime the maximum field is obtained with a linear extrapolation of the longitudinal wake to the back of the bubble), and the current profile is such that the longitudinal wakefield in the beam region is initially flat (i.e., strongly beam-loaded stages). The charge of the electron beam is \(Q_b(\hbox {pC})\simeq 37 (U_1 (J))^{1/3}\) in the quasi-linear stage and \(Q_b(\hbox {pC})\simeq 139 (U_1 (J))^{1/3}\) for the bubble case.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, M., Bulanov, S.S., Benedetti, C. et al. Strong-field QED experiments using the BELLA PW laser dual beamlines. Eur. Phys. J. D 76, 205 (2022). https://doi.org/10.1140/epjd/s10053-022-00535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00535-y

Navigation