Skip to main content
Log in

Thermal properties of 2D Schrödinger equation with new Morse interacting potential

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article, we carried out a comprehensive study of the analytical solutions of the 2D Schrödinger equation for a new Morse interacting potential. Using Nikiforov–Uvarov method, the energy eigenvalues and corresponding radial wave functions are obtained analytically. The thermodynamic and thermomagnetic properties of the system for the new Morse potential such as the partition function of the system, Helmholtz free energy, mean energy, entropy, specific heat capacity, magnetization, magnetic susceptibility, vibrational mean energy, and persistent current are analyzed in a closed form. Also, the numerical bound state solution for the new Morse interacting potential under the influence of AB and magnetic field for fixed magnetic quantum number but with varying principal quantum number for screening parameter is studied. It is shown that the temperature and the maximum quantum number effects play an importance role for the investigation of thermodynamic and thermomagnetic properties of the quantum system.

Graphical abstract

The partition function is the distribution function that can be used in understanding the quantum behavior of a physical system such as thermodynamic and thermomagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors Comments: All data included in this manuscript are available on request by contacting the corresponding author].

References

  1. U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, G.J. Rampho, J. Phys. Commun. 3, 095015 (2019)

    Article  Google Scholar 

  2. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordrecht, 2007)

    Book  MATH  Google Scholar 

  3. C.S. Jia, Y. Jia, Eur. Phys. J. D 71, 3 (2017)

    Article  ADS  Google Scholar 

  4. S. Dong, G.H. Sun, S.H. Dong, Int. J. Mod. Phys. E 22, 1350036 (2013)

    Article  ADS  Google Scholar 

  5. S.M. Ikhdair, R. Sever, J. Mol. Struct: THEOCHEM 809, 103 (2007)

    Article  Google Scholar 

  6. A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, M.I. Lekala, Eur. Phys. J. Plus. 135, 503 (2020)

    Article  Google Scholar 

  7. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullahi, Int. J. Quant. Chem. (2020). https://doi.org/10.1002/qua.26246

    Article  Google Scholar 

  8. V. Valencia-Torres, G.H. Sun, S.H. Dong, Phys. Scr. 90, 035205 (2015)

    Article  ADS  Google Scholar 

  9. A.N. Ikot, B.C. Lutfuoglu, M.I. Ngwueke et al., Eur. Phys. J. Plus 131, 419 (2016)

    Article  Google Scholar 

  10. A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju et al., Pramana. J. Phys. 90, 22 (2018)

    Google Scholar 

  11. S.H. Dong, M. Cruz-Irison, J. Math. Chem. 50, 881 (2012)

    Article  MathSciNet  Google Scholar 

  12. U.S. Okorie, A.N. Ikot, G.J. Rampho, R. Sever, Commun. Theor. Phys. 71, 1246 (2019)

    Article  ADS  Google Scholar 

  13. R. Kumar, F. Chand, Commun. Theor. Phys. 59, 467 (2013)

    Article  ADS  Google Scholar 

  14. R. Kumar, R.M. Singh, S.B. Bhahardivaj, R. Rani, F. Chand, Mod. Phys. Lett. A 37, 2250010 (2022)

    Article  ADS  Google Scholar 

  15. K.R. Purohit, P. Jakhad, A.K. Rai, Phy. Scripta 97, 044002 (2022)

    Article  ADS  Google Scholar 

  16. A. Gharaati, R. Khordad, Superlat. Microstr. 48, 276 (2010)

    Article  ADS  Google Scholar 

  17. R. Khordad, Ind. J. Phys. 87, 623 (2013)

    Article  Google Scholar 

  18. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  19. C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417, 326 (2006)

    Article  ADS  Google Scholar 

  20. A. Kratzer, Z. Phys. 3, 289 (1920)

    Article  ADS  Google Scholar 

  21. M. Hamzavi, M. Movahedi, K.E. Thylwe, A.A. Rajabi, Chin. Phys. Lett. 29, 080302 (2012)

    Article  ADS  Google Scholar 

  22. G.H. Sun, M.A. Aoki, S.H. Dong, Chin. Phys. B 22, 050302 (2013)

    Article  Google Scholar 

  23. U.S. Okorie, A.N. Ikot, C.O. Edet, G.J. Rampho, R. Horchani, H. Jelassi, Eur. Phys. J. D 75, 53 (2021)

    Article  ADS  Google Scholar 

  24. C.Y. Chen, F.L. Lu, D.S. Sun, Commun. Theor. Phys. 45, 889 (2006)

    Article  ADS  Google Scholar 

  25. C.Y. Chen, L.F. Lu, Y. You, Chin. Phys. B 21, 030302 (2012)

    Article  ADS  Google Scholar 

  26. N. Ferkous, A. Bounames, Commun. Theor. Phys. 59, 679 (2013)

    Article  ADS  Google Scholar 

  27. M. Eshghi, H. Mehraban, S.M. Ikhdair, Chin. Phys. B 26, 060302 (2017)

    Article  ADS  Google Scholar 

  28. M. Aygun, O. Bayrak, I. Boztosun, Y. Sahin, Eur. Phys. J. D 66, 35 (2012)

    Article  ADS  Google Scholar 

  29. S.M. Ikhdair, B.J. Falaye, J. Ass, Arab. Univ. Basic Appl. Sci. 16, 1 (2014)

    Google Scholar 

  30. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133 (2019)

    Article  Google Scholar 

  31. R. Horchani, H. Al-Aamri, N. Al-Kindii, A.N. Ikot, U.S. Okorie, G.J. Rampho, H. Jelassi, Eur. Phys. J. D (2020). https://doi.org/10.1140/epjd/s10053-021-00038-2

    Article  Google Scholar 

  32. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  33. S.H. Dong, R. Lemus, A. Frank, Int. J. Quant. Phys. 86, 433 (2002)

    Google Scholar 

  34. O. Bayrak, A. Soylu, I. Boztosun, J. Math. Phys. 51, 112301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Sun, Bull. Kor. Chem. Soc. 32, 4233 (2011)

    Article  Google Scholar 

  36. S. Ortakaya, Commun. Theor. Phys. 59, 689 (2013)

    Article  MathSciNet  Google Scholar 

  37. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (BirkhauserVerlag Basel, Germany, 1988)

    Book  MATH  Google Scholar 

  38. A.N. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, R. Sever, Few-Body Syst. 62, 9 (2021)

    Article  ADS  Google Scholar 

  39. A. Boumali, J. Math. Chem. 56, 1656 (2018)

    Article  MathSciNet  Google Scholar 

  40. K. Chabi, A. Boumali, Rev. Mex. Fis. 66, 110 (2020)

    Article  Google Scholar 

  41. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    Article  ADS  Google Scholar 

  42. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.N. Ikot and I.B. Okon initiated the work and wrote the introduction of the work. U.S. Okorie and L.F. Obagboye calculated the 2D equation. A.I. Ahmadov and H.Y. Abdullah evaluated the partition function. K.W. Qadir, M.E. Udoh and C. A. Onate wrote the discussion. All the authors read and approve the submission of the manuscript.

Corresponding author

Correspondence to A. N. Ikot.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikot, A.N., Okorie, U.S., Okon, I.B. et al. Thermal properties of 2D Schrödinger equation with new Morse interacting potential. Eur. Phys. J. D 76, 208 (2022). https://doi.org/10.1140/epjd/s10053-022-00533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00533-0

Navigation