Skip to main content

Advertisement

Log in

The structures and electronic properties of (LiF)n (n = 2∼18)

  • Regular Article – Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The stable isomers of (LiF)n (n = 2∼18) are obtained by using genetic algorithm combined with DFT calculations. Both the (LiF)2 and (LiF)3 are planar structures, and from n = 4, the three-dimensional structures become more energy favored. The cage-like isomers are dominated for n = 4∼12. However, (LiF)9 and (LiF)15 adopt tubular configurations, while (LiF)16 and (LiF)18 form rock-salt structures. (LiF)n (n = 2, 4, 6, 9, 12 and 15) can be considered as magic number clusters and particularly stable. There is small vertical electron affinity but large vertical ionization potential for (LiF)n. The electronic structure analysis indicates that Li atoms transferred their 2 s electrons to the 2p orbitals of F atoms, and thus form strong Li-F ionic bonds. The IR, Raman and UV–Vis spectra are also acquired. Both the electrostatic potential and the dual descriptor suggest that the locations of Li and F atoms are the optimal reaction sites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material. The datasets during the current study are available from the author on reasonable request.

Code availability

The codes of the current study are available from the author on reasonable request.

References

  1. V. Mussi, F. Somma, P. Moretti, J. Mugnier, B. Jacquier, R.M. Montereali, E. Nichelatti, Mode analysis in He+-implanted lithium fluoride planar waveguides. Appl. Phys. Lett. 82(22), 3886–3888 (2003)

    Article  Google Scholar 

  2. R.M. Montereali, A. Mancini, G.C. Righini, S. Pelli, Active stripe waveguides produced by electron beam lithography in LiF single crystals. Optics Communications 153(4–6), 223–225 (1998)

    Article  Google Scholar 

  3. R.M. Montereali, M. Piccinini, E. Burattini, Amplified spontaneous emission in active channel waveguides produced by electron-beam lithography in LiF crystals. Appl. Phys. Lett. 78(26), 4082–4084 (2001)

    Article  Google Scholar 

  4. S.X. Wu, Y.H. Kan, H.B. Li, L. Zhao, Y. Wu, Z.M. Su, Quantum chemical insight into the LiF interlayer effects in organic electronics: Reactions between al atom and LiF clusters. J. Phys. Chem. Lett. 6(15), 2950–2958 (2015)

    Article  Google Scholar 

  5. K. Rajput, V. Kumar, D.R. Roy, Two-dimensional lithium fluoride LiF as an efficient hydrogen storage material. Appl. Surf. Sci. 581, 151,776-151,786 (2022)

    Article  Google Scholar 

  6. R.R. Oliveira, F. Fantuzzi, M.A.C. Nascimento, Ab initio study of structural and electronic properties of lithium fluoride nanotubes. J. Appl. Phys. 129(20), 205102–205108 (2021)

    Article  Google Scholar 

  7. F.A. Fernandez-Lima, O.P. Vilelaneto, A.S. Pimentel, Theoretical and experimental study of negative LiF clusters produced by fast ion impact on a polycrystalline 7 LiF target. J. Phys. Chem. A 113(52), 15,031-15,040 (2009)

    Article  Google Scholar 

  8. F.A. Fernandez-Lima, O.P. Vilelaneto, A.S. Pimentel, C.R. Ponciano, M. Pacheco, M. Nascimento, E. Silveira, A theoretical and experimental study of positive and neutral LiF clusters produced by fast ion impact on a polycrystalline LiF target. J. Phys. Chem. A 113(9), 1813–1821 (2009)

    Article  Google Scholar 

  9. C.R. Ponciano, R. Martinez, E. Silveira, Fragmentation of (LiF)n Li+ clusters in the acceleration region of TOF spectrometers. J. Mass Spectrom. 42(10), 1300–1309 (2010)

    Article  Google Scholar 

  10. H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, A. Cassimi, F. Ropars, T. Been, J.M. Ramillon, H. Lebius, B. Dtat, L. Farenzena, E. Da, S. Eur, J. Phys, E. da Silveira, Electronic sputtering: Angular distributions of (LiF)n Li+ clusters emitted in collisions of Kr (10.1 mev/u) with LiF single crystals. European Phys. J. D 66, 68–73 (2012)

    Article  Google Scholar 

  11. R.L. Redington, Infrared vibrational spectra of matrix-isolated cyclic Li2F2, Li3F3, and Li4F4 isotopomers. J. Chem. Phys. 102(19), 7325–7331 (1995)

    Article  Google Scholar 

  12. P.N. Swepston, H.L. Sellers, L. Schäfer, Ab initio studies of structural features not easily amenable to experiment. ii. the influence of bond delocalization effects on the molecular structures of some lithium fluoride clusters. J. Chem. Phys. 74(4), 2372–2375 (1981)

    Article  Google Scholar 

  13. A.K. Srivastava, N. Misra, Can Li3F3 cluster be formed by FiF2/Li2F-Li/F interactions? an ab initio investigation. Mol. Simul. 41(15), 1278–1282 (2015)

    Article  Google Scholar 

  14. N. Haketa, K. Yokoyama, H. TanakaHiroshi, Theoretical study on the geometric and electronic structure of the lithium-rich LinFn−1(n=2-5) clusters. J. Mol. Struct. (Thoechem) 577(1), 55–67 (2002)

    Article  Google Scholar 

  15. A. Aguado, A. Ayuela, J.A. Lpez, Alonso, structure and bonding in small neutral alkali-halide clusters. Physical Review B 56(23), 15,353-15,360 (1997)

    Article  Google Scholar 

  16. K. Doll, J.C. Schn, M. Jansen, Ab initio energy landscape of LiF clusters. J. Chem. Phys. 133(2), 02,4107-02,4115 (2010)

    Article  Google Scholar 

  17. D. Oschetzki, G. Rauhut, Pushing the limits in accurate vibrational structure calculations: Anharmonic frequencies of lithium fluoride clusters (LiF)n, n = 2–10. Phys. Chem. Chem. Phys. 16(31), 16426–16435 (2014)

    Article  Google Scholar 

  18. A.K. Srivastava, N. Misra, Novel planar chain like Li7F7 and Li9F9 nanostructures. Chem. Phys. Lett. 612, 302–305 (2014)

    Article  Google Scholar 

  19. Y.F. Zhang, X.L. Cheng, First-principles study of hydrogen storage on Li12F12 nano-cage. Chem. Phys. Lett. 672, 105–111 (2017)

    Article  Google Scholar 

  20. J.J. Zhao, R.H. Xie, Genetic algorithms for the geometry optimization of atomic and molecular clusters. J. Comput. Theor. Nanosci. 1(2), 117–131 (2004)

    Article  Google Scholar 

  21. D. Wu, R. Shi, Q. Du, X. Wu, X. Liang, X. Huang, L. Sai, J.J. Zhao, Atomic structures and electronic properties of large-sized Gen clusters (n=45, 50, 55, 60, 65, 70) by first-principles global search. J. Cluster Sci. 30, 371–377 (2019)

    Article  Google Scholar 

  22. B. Delley, An all electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)

    Article  Google Scholar 

  23. B.J. Delley, From molecules to solids with the dmol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  25. P. John, Density-functional approximation for the correlation energy of the in homogeneous electron gas. Phys. Rev. B 33(12), 8822–8824 (1986)

    Article  Google Scholar 

  26. A. Schfer, C. Huber, R. Ahlrichs, Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms li to kr. J. Chem. Phys. 100(8), 5829–5835 (1994)

    Article  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, D. J. Fox, Gaussian 09 (2009)

  28. L. Wharton, W. Klemperer, L.P. Gold, R. Strauch, J.J. Gallagher, V.E. Derr, Microwave spectrum, spectroscopic constants, and electric dipole moment of Li6F19. J. Chem. Phys. 38(5), 1203–1210 (1963)

    Article  Google Scholar 

  29. D. Gordon, Springer handbook of atomic, molecular, and optical physics atomic spectroscopy (Chapter 10), 175–198 (2006). https://doi.org/10.1007/978-0-387-26308-3

  30. C. Blondel, C. Delsart, F. Goldfarb, Electron spectrometry at the ev level and the electron affinities of Si and F. J. Phys. B: At. Mol. Opt. Phys. 34(9), 281–288 (2001)

    Article  Google Scholar 

  31. T. Lu, F. Chen, A. Multiwfn, A multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  Google Scholar 

  32. R.P. Dickey, D. Maurice, R.J. Cave, R. Mawhorter, A theoretical investigation of the geometries, vibrational frequencies, and binding energies of several alkali halide dimers. J. Chem. Phys. 98(3), 2182–2190 (1993)

    Article  Google Scholar 

  33. P. Niknam, S. Jamehbozorgi, M. Rezvani, V. Izadkhah, Understanding delivery and adsorption of flutamide drug with znons based on: Dispersion-corrected dft calculations and MD simulations. Phys. E Low-Dimens. Syst. Nanostruct. 135, 114937 (2022)

    Article  Google Scholar 

  34. M. Rezvani, M. Astaraki, A. Rahmanzadeh, M.D. Ganji, Theoretical assessments on the interaction between amino acids and the g-Mg3N2 monolayer: dispersion corrected DFT and DFT-MD simu lations. Phys. Chem. Chem. Phys. 23, 17440–17452 (2021)

    Article  Google Scholar 

  35. M.D. Ganji, M. Rezvani, M. Shokry, A. Mirnejad, First-principles investigation on the formation of endohedral complexes between CH4 molecules and Si60 fullerene nanocage. Fuller. Nanotubes Carbon Nanostruct. 19(5), 421–428 (2011)

    Article  Google Scholar 

  36. M.D. Ganji, M. Mousavy, M. Rezvani, On the encapsulation of azafullerenes inside the single-walled carbon nanotubes: Density-functional theory-based treatments. Physica B 406(8), 1561–1566 (2011)

    Article  Google Scholar 

  37. M. Sabet, S. Tanreh, A. Khosravi, M. Astaraki, M. Rezvani, M.D. Ganji, Theoretical assessment of the solvent effect on the functionalization of Au32 and C60 nanocages with fluorouracil drug. Diamond Related Mater. 126, 109,142 (2022)

    Article  Google Scholar 

  38. J.P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111(45), 11683–11700 (2007)

    Article  Google Scholar 

  39. G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, V. Barone, Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 124(9), 427–457 (2006)

    Article  Google Scholar 

  40. B. Shi, L. Yuan, T. Tang, Y. Yuan, Y. Tang, Study on electronic structure and excitation characteristics of cyclo[18]carbon - sciencedirect. Chem. Phys. Lett. 741(136), 975–985 (2020)

    Google Scholar 

  41. M. Rezvani, M.D. Ganji, S. Jameh-Bozorghi, A. Niazi, DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrinemetalloporphyrine triads based dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 194, 57–66 (2018)

    Article  Google Scholar 

  42. M.T. Moghim, S. Jamehbozorgi, M. Rezvani, M. Ramezani, Computational investigation on the geometry and electronic structures and absorption spectra of metal-porphyrin-oligo-phenyleneethynylenes-[6]fullerene triads. Spectrochimica Acta Part A Molecular Biomol. Spectros. 280, 121,488 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Computer Center of Gansu Province and Shenzhen for offering computer facilities. We appreciate Ji-jun Zhao for offering the GA code.

Funding

This work was supported by the National Science Foundation of China (NFSC11164034).

Author information

Authors and Affiliations

Authors

Contributions

Yue-hong Yin designed the study and wrote the paper. Wen-juan Liu performed the calculations.

Corresponding author

Correspondence to Yue-Hong Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2131 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, YH., Liu, WJ. The structures and electronic properties of (LiF)n (n = 2∼18). Eur. Phys. J. D 76, 201 (2022). https://doi.org/10.1140/epjd/s10053-022-00529-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00529-w

Navigation