Skip to main content
Log in

Classification and measurement of multipartite entanglement by reconstruction of correlation tensors on an NMR quantum processor

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We introduce a protocol to classify three-qubit pure states into different entanglement classes and implement it on an NMR quantum processor. The protocol is designed in such a way that the experiments performed to classify the states can also measure the amount of entanglement present in the state. The classification requires the experimental reconstruction of the correlation matrices using 13 operators. The rank of the correlation matrices provides the criteria to classify the state in one of the five classes, namely separable, biseparable (of three types), and genuinely entangled (of two types, GHZ and W). To quantify the entanglement, a concurrence function is defined which measures the global entanglement present in the state, using the same 13 operators. Global entanglement is zero for separable states and nonzero otherwise. We demonstrate the efficacy of the protocol by implementing it on states chosen from each of the six inequivalent (under stochastic local operations and classical communication) classes for three qubits. We also implement the protocol on states picked at random from the state space of three-qubit pure states.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Gühne, G. Tóth, Entanglement detection. Phys. Rep. 474(1), 1–75 (2009). https://doi.org/10.1016/j.physrep.2009.02.004

    Article  MathSciNet  Google Scholar 

  3. C. Eltschka, J. Siewert, Maximum \(N\)-body correlations do not in general imply genuine multipartite entanglement. Quantum 4, 229 (2020). https://doi.org/10.22331/q-2020-02-10-229

  4. M. Enríquez, I. Wintrowicz, K. Życzkowski, Maximally entangled multipartite states: a brief survey. J. Phys.: Conf. Ser. 698, 012003 (2016). https://doi.org/10.1088/1742-6596/698/1/012003

    Article  Google Scholar 

  5. W. Dur, G. Vidal, J.I. Cirac, Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314

    Article  MathSciNet  Google Scholar 

  6. M.M. Cunha, A. Fonseca, E.O. Silva, Tripartite entanglement: foundations and applications. Universe 5(10), 209 (2019). https://doi.org/10.3390/universe5100209

    Article  Google Scholar 

  7. M. Li, S.-M. Fei, X. Li-Jost, H. Fan, Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015). https://doi.org/10.1103/PhysRevA.92.062338

    Article  Google Scholar 

  8. M. Sanz, I.L. Egusquiza, R. Di Candia, H. Saberi, L. Lamata, E. Solano, Entanglement classification with matrix product states. Sci. Rep. 6(1), 30188 (2016). https://doi.org/10.1038/srep30188

    Article  Google Scholar 

  9. M. Li, J. Wang, S. Shen, Z. Chen, S.-M. Fei, Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. 7(1), 17274 (2017). https://doi.org/10.1038/s41598-017-17585-7

    Article  Google Scholar 

  10. L.-M. Yang, B.-Z. Sun, B. Chen, S.-M. Fei, Z.-X. Wang, Quantum Fisher information-based detection of genuine tripartite entanglement. Quantum Inf. Process. 19(8), 262 (2020). https://doi.org/10.1007/s11128-020-02766-7

    Article  MathSciNet  Google Scholar 

  11. A. Ketterer, N. Wyderka, O. Gühne, Entanglement characterization using quantum designs. Quantum 4, 325 (2020). https://doi.org/10.22331/q-2020-09-16-325

  12. W.-C. Qiang, G.-H. Sun, Q. Dong, O. Camacho-Nieto, S.-H. Dong, Concurrence of three Jaynes–Cummings systems. Quantum Inf. Process. 17(4), 90 (2018). https://doi.org/10.1007/s11128-018-1851-8

    Article  MathSciNet  MATH  Google Scholar 

  13. W.-C. Qiang, G.-H. Sun, Q. Dong, S.-H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018). https://doi.org/10.1103/PhysRevA.98.022320

    Article  Google Scholar 

  14. A.J. Torres-Arenas, Q. Dong, G.-H. Sun, W.-C. Qiang, S.-H. Dong, Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93–105 (2019). https://doi.org/10.1016/j.physletb.2018.12.010

    Article  Google Scholar 

  15. W.-C. Qiang, Q. Dong, M.A. Mercado Sanchez, G.-H. Sun, S.-H. Dong, Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 18(10), 314 (2019). https://doi.org/10.1007/s11128-019-2421-4

    Article  MathSciNet  Google Scholar 

  16. S. Dogra, K. Dorai, Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015). https://doi.org/10.1103/PhysRevA.91.022312

    Article  Google Scholar 

  17. D. Das, S. Dogra, K. Dorai, Experimental construction of a W superposition state and its equivalence to the Greenberger–Horne–Zeilinger state under local filtration. Phys. Rev. A 92, 022307 (2015). https://doi.org/10.1103/PhysRevA.92.022307

    Article  Google Scholar 

  18. A. Singh, H. Singh, K. Dorai, Experimental classification of entanglement in arbitrary three-qubit pure states on an NMR quantum information processor. Phys. Rev. A 98, 032301 (2018). https://doi.org/10.1103/PhysRevA.98.032301

    Article  Google Scholar 

  19. A. Singh, K. Dorai, Experimentally identifying the entanglement class of pure tripartite states. Quantum Inf. Process. 17(12), 334 (2018). https://doi.org/10.1007/s11128-018-2105-5

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Xin, J.S. Pedernales, E. Solano, G.-L. Long, Entanglement measures in embedding quantum simulators with nuclear spins. Phys. Rev. A 97, 022322 (2018). https://doi.org/10.1103/PhysRevA.97.022322

    Article  Google Scholar 

  21. A. Singh, D. Singh, V. Gulati, K. Dorai, Experimental detection of non-local correlations using a local measurement-based hierarchy on an NMR quantum processor. Eur. Phys. J. D 74(8), 168 (2020). https://doi.org/10.1140/epjd/e2020-10173-9

    Article  Google Scholar 

  22. D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, A. Zeilinger, Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999). https://doi.org/10.1103/PhysRevLett.82.1345

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Zhu, M.-J. Hu, S. Cheng, M.J.W. Hall, C.-F. Li, G.-C. Guo, Y.-S. Zhang, Experimental verification of anisotropic invariance for three-qubit states. Phys. Rev. A 99, 040103 (2019). https://doi.org/10.1103/PhysRevA.99.040103

    Article  Google Scholar 

  24. X.-P. Zang, M. Yang, F. Ozaydin, W. Song, Z.-L. Cao, Deterministic generation of large scale atomic W states. Opt. Express 24(11), 12293–12300 (2016). https://doi.org/10.1364/OE.24.012293

    Article  Google Scholar 

  25. M. Neeley, R.C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A.N. Cleland, J.M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits. Nature 467(7315), 570–573 (2010). https://doi.org/10.1038/nature09418

    Article  Google Scholar 

  26. D. Erdösi, M. Huber, B.C. Hiesmayr, Y. Hasegawa, Proving the generation of genuine multipartite entanglement in a single-neutron interferometer experiment. N. J. Phys. 15(2), 023033 (2013). https://doi.org/10.1088/1367-2630/15/2/023033

    Article  Google Scholar 

  27. J.I. de Vicente, M. Huber, Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011). https://doi.org/10.1103/PhysRevA.84.062306

    Article  Google Scholar 

  28. S. Wang, Y. Lu, G.-L. Long, Entanglement classification of \(2\times 2 \times 2\times d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013). https://doi.org/10.1103/PhysRevA.87.062305

    Article  Google Scholar 

  29. H. Zhao, M.-M. Zhang, N. Jing, Z.-X. Wang, Separability criteria based on Bloch representation of density matrices. Quantum Inf. Process. 19(1), 14 (2020). https://doi.org/10.1007/s11128-019-2504-2

    Article  MathSciNet  Google Scholar 

  30. M. Li, L. Jia, J. Wang, S. Shen, S.-M. Fei, Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017). https://doi.org/10.1103/PhysRevA.96.052314

    Article  Google Scholar 

  31. L. Knips, J. Dziewior, W. Kłobus, W. Laskowski, T. Paterek, P.J. Shadbolt, H. Weinfurter, J.D.A. Meinecke, Multipartite entanglement analysis from random correlations. NPJ Quantum Inf. 6(1), 51 (2020). https://doi.org/10.1038/s41534-020-0281-5

    Article  Google Scholar 

  32. G. Sarbicki, G. Scala, D. Chruś ściń ński, Family of multipartite separability criteria based on a correlation tensor. Phys. Rev. A 101, 012341 (2020). https://doi.org/10.1103/PhysRevA.101.012341

  33. I.S. Oliveira, T.J. Bonagamba, R.S. Sarthour, J.C.C. Freitas, E.R. deAzevedo, NMR Quantum Information Processing. Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK (2007)

  34. D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana, R.M. Serra, L.C. Céleri, On the quantumness of correlations in nuclear magnetic resonance. Philos. Trans. R. Soc. A 370(1976), 4821–4836 (2012). https://doi.org/10.1098/rsta.2011.0364

    Article  MATH  Google Scholar 

  35. R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989). https://doi.org/10.1103/PhysRevA.40.4277

    Article  MATH  Google Scholar 

  36. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press (2006). https://doi.org/10.1017/CBO9780511535048

  37. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Acín, A. Andrianov, L. Costa, E. Jané, J.I. Latorre, R. Tarrach, Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560–1563 (2000). https://doi.org/10.1103/PhysRevLett.85.1560

    Article  Google Scholar 

  39. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61, 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306

    Article  Google Scholar 

  40. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997). https://doi.org/10.1103/PhysRevLett.78.5022

    Article  Google Scholar 

  41. X. Guo, C.T. Ma, Violation \(\ne \) quantum. arXiv (2021). https://doi.org/10.48550/ARXIV.2109.03871

  42. X. Guo, C.T. Ma Tripartite entanglement and quantum correlation. arXiv (2021) arXiv:2103.02983 [quant-ph]

  43. D.A. Meyer, N.R. Wallach, Global entanglement in multiparticle systems. J. Math. Phys. 43(9), 4273–4278 (2002). https://doi.org/10.1063/1.1497700

    Article  MathSciNet  MATH  Google Scholar 

  44. G.K. Brennen, An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inf. Comput. 3(6), 619–626 (2003)

    MathSciNet  MATH  Google Scholar 

  45. J.S. Kim, B.C. Sanders, Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theor. 43(44), 445305 (2010). https://doi.org/10.1088/1751-8113/43/44/445305

    Article  MATH  Google Scholar 

  46. D.G. Cory, M.D. Price, T.F. Havel, Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Phys. D: Nonlinear Phenom. 120(1–2), 82–101 (1998). https://doi.org/10.1016/s0167-2789(98)00046-3

    Article  Google Scholar 

  47. A. Mitra, K. Sivapriya, A. Kumar, Experimental implementation of a three qubit quantum game with corrupt source using nuclear magnetic resonance quantum information processor. J. Magn. Reson. 187(2), 306–313 (2007). https://doi.org/10.1016/j.jmr.2007.05.013

    Article  Google Scholar 

  48. H. Singh, K. Arvind Dorai, Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022302 (2018). https://doi.org/10.1103/PhysRevA.97.022302

  49. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005). https://doi.org/10.1016/j.jmr.2004.11.004

    Article  Google Scholar 

  50. G.L. Long, H.Y. Yan, Y. Sun, Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B Quantum Semiclassical Opt. 3(6), 376–381 (2001). https://doi.org/10.1088/1464-4266/3/6/305

    Article  Google Scholar 

  51. G.M. Leskowitz, L.J. Mueller, State interrogation in nuclear magnetic resonance quantum-information processing. Phys. Rev. A 69, 052302 (2004). https://doi.org/10.1103/PhysRevA.69.052302

    Article  Google Scholar 

  52. H. Singh, K. Dorai, Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Phys. Lett. A 380(38), 3051–3056 (2016). https://doi.org/10.1016/j.physleta.2016.07.046

  53. A. Gaikwad, K. Shende, K. Dorai, Experimental demonstration of optimized quantum process tomography on the IBM quantum experience. Int. J. Quantum Inf. 19(07), 2040004 (2021). https://doi.org/10.1142/S0219749920400043

  54. R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994). https://doi.org/10.1080/09500349414552171

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Uhlmann, The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9(2), 273–279 (1976). https://doi.org/10.1016/0034-4877(76)90060-4

    Article  MathSciNet  MATH  Google Scholar 

  56. R.I. Wolfram, Mathematica, Version 12.0. Champaign, IL (2019)

Download references

Acknowledgements

All experiments were performed on a 600 MHz FT-NMR spectrometer at the NMR Research Facility IISER Mohali. Arvind acknowledges financial support from DST/ICPS/QuST/Theme-1/2019/General Project Number Q-68. K.D. acknowledges financial support from DST/ICPS/QuST/Theme-2/2019/General Project Number Q-74.

Author information

Authors and Affiliations

Authors

Contributions

VG performed the experiments. VG, KD and Arvind discussed the physics, experimental and computational results and jointly wrote the manuscript. KD and Arvind supervised the project.

Corresponding author

Correspondence to Kavita Dorai.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, V., Arvind & Dorai, K. Classification and measurement of multipartite entanglement by reconstruction of correlation tensors on an NMR quantum processor. Eur. Phys. J. D 76, 194 (2022). https://doi.org/10.1140/epjd/s10053-022-00527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00527-y

Navigation