Skip to main content
Log in

Coherent quantum state transfer in ultra-cold chemistry

  • Regular Article - Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Creation and manipulation of cold molecules from atomic Bose–Einstein condensate has opened up a new dimension to study chemical reactions at ultra-cold temperature, known as ‘superchemistry,’ which is extremely useful for the quantum control of matter wave reaction at ultra-cold temperature. Here, a coherent quantum state transfer of atomic to molecular condensate is demonstrated, mediated by solitonic excitation in the mean-field geometry. It is observed that the induced photoassociation is found to control the velocity of these excitations, which in turn controls the chemical reaction fronts. Cooperative many-body effects of photoassociation on Lieb mode have also been studied through molecular dispersion, revealing degeneracy and bistable behavior. Furthermore, it is observed that the photoassociation-induced molecular energy shows oscillatory behavior, analogous to the classical reaction process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.]

Notes

  1. However, Shuman et al. [3] at Yale University experimentally demonstrate laser cooling of the diatomic molecule, strontium monofluoride (SrF), with a strong diagonal Franck–Condon matrix that satisfies the requirements for laser cooling.

References

  1. J. Toscano, H. Lewandowski, B.R. Heazlewood, Phys. Chem. Chem. Phys. 22(17), 9180 (2020)

    Google Scholar 

  2. J. Li, B. Zhao, D. Xie, H. Guo, J. Phys. Chem. Lett. 11(20), 8844 (2020)

    Google Scholar 

  3. E.S. Shuman, J.F. Barry, D. DeMille, Nature 467(7317), 820 (2010)

    ADS  Google Scholar 

  4. K. Xu, T. Mukaiyama, J.R. Abo-Shaeer, J.K. Chin, D.E. Miller, W. Ketterle, Phys. Rev. Lett. 91, 210402 (2003)

    ADS  Google Scholar 

  5. J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.C. Nägerl, R. Grimm, Science 301, 1510 (2003)

    ADS  Google Scholar 

  6. C. McKenzie, J. Hecker Denschlag, H. Häffner, A. Browaeys, L.E.E. de Araujo, F.K. Fatemi, K.M. Jones, J.E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P.S. Julienne, K. Helmerson, P.D. Lett, S.L. Rolston, W.D. Phillips, Phys. Rev. Lett. 88, 120403 (2002)

  7. H. Son, J.J. Park, W. Ketterle, A.O. Jamison, Nature 580(7802), 197 (2020)

    ADS  Google Scholar 

  8. Z. Zhang, L. Chen, K.X. Yao, C. Chin, Nature 592(7856), 708 (2021)

    ADS  Google Scholar 

  9. R. Wynar, R.S. Freeland, D.J. Han, C. Ryu, D.J. Heinzen, Science 287, 1016 (2000)

    ADS  Google Scholar 

  10. M. Mark, T. Kraemer, J. Herbig, C. Chin, H.C. Nägerl, R. Grimm, Europhys. Lett. 69, 706 (2005)

    ADS  Google Scholar 

  11. I.C. Liu, J.M. Rost, Eur. Phys. J. D 40(1), 65 (2006)

    ADS  Google Scholar 

  12. K. Winkler, F. Lang, G. Thalhammer, P.v.d. Straten, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 98, 043201 (2007)

  13. J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.C. Nägerl, Science 321, 1062 (2008)

    ADS  Google Scholar 

  14. A. Devolder, P. Brumer, T.V. Tscherbul, Phys. Rev. Lett. 126(15), 153403 (2021)

    ADS  Google Scholar 

  15. R.S. Tasgal, G. Menabde, Y.B. Band, Phys. Rev. A 74, 053613 (2006)

    ADS  Google Scholar 

  16. J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemüller, Chem. Rev. 112, 4890 (2012)

    Google Scholar 

  17. R. Roy, R. Shrestha, A. Green, S. Gupta, M. Li, S. Kotochigova, A. Petrov, C.H. Yuen, Phys. Rev. A 94, 033413 (2016)

    ADS  Google Scholar 

  18. S. Naskar, S. Saha, T.N. Dey, B. Deb, J. Phys. B: At. Mol. Opt. Phys. 50, 125003 (2017)

    ADS  Google Scholar 

  19. D.J. Heinzen, R. Wynar, P.D. Drummond, K.V. Kheruntsyan, Phys. Rev. Lett. 84, 5029 (2000)

    ADS  Google Scholar 

  20. M.T. Bell, T.P. Softley, Mol. Phys. 107(2), 99 (2009)

    ADS  Google Scholar 

  21. S.A. Moses, J.P. Covey, M.T. Miecnikowski, D.S. Jin, J. Ye, Nat. Phys. 13, 13 (2017)

    Google Scholar 

  22. B.R. Heazlewood, T.P. Softley, Nat. Rev. Chem. 5(2), 125 (2021)

    Google Scholar 

  23. F. Richter, D. Becker, C. Bény, T.A. Schulze, S. Ospelkaus, T.J. Osborne, New J. Phys. 17(5), 055005 (2015)

    ADS  Google Scholar 

  24. Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, E. Narevicius, Nature 572(7768), 189 (2019)

    ADS  Google Scholar 

  25. H. Yang, D.C. Zhang, L. Liu, Y.X. Liu, J. Nan, B. Zhao, J.W. Pan, Science 363(6424), 261 (2019)

    ADS  Google Scholar 

  26. F.Q. Dou, J. Yang, Y.Q. Lu, Phys. Lett. A 410, 127549 (2021)

    Google Scholar 

  27. V.A. Yurovsky, arXiv preprint arXiv:cond-mat/0611054 (2006)

  28. L.R. Liu, J.T. Zhang, Y. Yu, N.R. Hutzler, Y. Liu, T. Rosenband, K.K. Ni, arXiv: 1701.03121 (2017)

  29. R.M. Noyes, J. Phys. Chem. 94(11), 4404 (1990)

    Google Scholar 

  30. A. Belmonte, J.M. Flesselles, Q. Ouyang, Europhys. Lett. 35(9), 665 (1996)

    ADS  Google Scholar 

  31. K. Gizynski, J. Gorecki, Phys. Chem. Chem. Phys. 19, 6519 (2017)

    Google Scholar 

  32. J. Hou, X. Li, D. Zuo, Y. Li, Eur. Phys. J. Plus 132, 283 (2017)

    Google Scholar 

  33. P. Dähmlow, J. Almeida, S. Müller, Europhys. Lett. 116(6), 60016 (2017)

    ADS  Google Scholar 

  34. U. Al Khawaja, H. Stoof, New J. Phys. 13, 085003 (2011)

  35. C.P. Search, P. Meystre, Phys. Rev. Lett. 93, 140405 (2004)

    ADS  Google Scholar 

  36. J. Cheng, Y. Yan, Phys. Rev. A 75, 033614 (2007)

    ADS  Google Scholar 

  37. Y.Q. Yuan, B. Tian, L. Liu, Y. Sun, Europhys. Lett. 120(3), 30001 (2017)

    ADS  Google Scholar 

  38. P.D. Drummond, K.V. Kheruntsyan, H. He, Phys. Rev. Lett. 81, 3055 (1998)

    ADS  Google Scholar 

  39. K.V. Kheruntsyan, P.D. Drummond, Phys. Rev. A 58, R2676 (1998)

    ADS  Google Scholar 

  40. T.L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996)

    ADS  Google Scholar 

  41. H. Pu, N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998)

    ADS  Google Scholar 

  42. Q.H. Park, J.H. Eberly, Phys. Rev. Lett. 85, 4195 (2000)

    ADS  Google Scholar 

  43. C. Haimberger, J. Kleinert, M. Bhattacharya, N.P. Bigelow, Phys. Rev. A 70, 021402 (2004)

    ADS  Google Scholar 

  44. P. Das, A. Khan, P.K. Panigrahi, Eur. Phys. J. D 70, 113 (2016)

    ADS  Google Scholar 

  45. S.L. Xu, J.R. He, L. Xue, M.R. Belić, Europhys. Lett. 121(3), 34004 (2018)

    ADS  Google Scholar 

  46. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999)

    ADS  Google Scholar 

  47. J. Denschlag, J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, W.D. Phillips, Science 287, 97 (2000). https://doi.org/10.1126/science.287.5450.97

    Article  ADS  Google Scholar 

  48. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L.D. Carr, Y. Castin, C. Salomon, Science 296, 1290 (2002). https://doi.org/10.1126/science.1071021

    Article  ADS  Google Scholar 

  49. U. Al Khawaja, H.T.C. Stoof, R.G. Hulet, K.E. Strecker, G.B. Partridge, Phys. Rev. Lett. 89, 200404 (2002)

  50. S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)

    ADS  Google Scholar 

  51. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    ADS  Google Scholar 

  52. F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996)

    ADS  Google Scholar 

  53. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001). https://doi.org/10.1126/science.1060182

    Article  ADS  Google Scholar 

  54. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    ADS  Google Scholar 

  55. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    ADS  Google Scholar 

  56. T.L. Ho, Phys. Rev. Lett. 81(4), 742 (1998)

    ADS  Google Scholar 

  57. W. Bao, Y. Cai, Comput. Phys. Commun. 24, 899 (2018)

    Google Scholar 

  58. D. Stamper-Kurn, M. Andrews, A. Chikkatur, S. Inouye, H.J. Miesner, J. Stenger, W. Ketterle, Phys. Rev. Lett. 80(10), 2027 (1998)

    ADS  Google Scholar 

  59. J. Stenger, S. Inouye, D. Stamper-Kurn, H.J. Miesner, A. Chikkatur, W. Ketterle, Nature 396(6709), 345 (1998)

    ADS  Google Scholar 

  60. Y. Kawaguchi, M. Ueda, Phys. Rep. 520(5), 253 (2012)

    ADS  MathSciNet  Google Scholar 

  61. D.M. Stamper-Kurn, M. Ueda, Rev. Mod. Phys. 85(3), 1191 (2013)

    ADS  Google Scholar 

  62. G.P. Agrawal, P.L. Baldeck, R.R. Alfano, Phys. Rev. A 40, 5063 (1989)

    ADS  Google Scholar 

  63. E.H. Lieb, Phys. Rev. 130, 1616 (1963)

    ADS  MathSciNet  Google Scholar 

  64. C. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, 2002)

  65. B. Oleś, K. Sacha, J. Phys. B: At. Mol. Opt. Phys. 40, 1103 (2007)

    ADS  Google Scholar 

  66. E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417(6888), 529 (2002)

    ADS  Google Scholar 

  67. A.D. Jackson, G.M. Kavoulakis, Phys. Rev. Lett. 89, 070403 (2002)

    ADS  Google Scholar 

  68. M. Hafezi, D.E. Chang, V. Gritsev, E. Demler, M.D. Lukin, Phys. Rev. A 85, 013822 (2012)

    ADS  Google Scholar 

  69. P. Das, C. Noh, D.G. Angelakis, Europhys. Lett. 103(3), 34001 (2013)

    ADS  Google Scholar 

  70. G.S. Agarwal, T.N. Dey, Phys. Rev. A 68, 063816 (2003)

    ADS  Google Scholar 

  71. H. Jing, Y.J. Jiang, Y.G. Deng, Front. Phys. 6, 15 (2011)

    ADS  Google Scholar 

  72. K. Reim, J. Nunn, V. Lorenz, B. Sussman, K. Lee, N. Langford, D. Jaksch, I. Walmsley, Nat. Photonics 4(4), 218 (2010)

    ADS  Google Scholar 

  73. L. Allen, J.H. Eberly, Optical Resonance and Two-level Atoms (Courier Corporation, 2012)

Download references

Acknowledgements

The authors acknowledge useful discussions with Krishna Rai Dastidar and Challenger Mishra. PD acknowledges the Indian Institute of Science Education and Research Kolkata (IISER-K) and Indian Institute of Technology (IIT) Delhi for providing facilities, where the part of the present work has been completed.

Author information

Authors and Affiliations

Authors

Contributions

PKP conceived the presented idea. SM and PD carried out the theoretical formalism and performed the analytical calculations. All the authors have equally contributed to the analysis of the results and the preparation of the manuscript.

Corresponding author

Correspondence to Priyam Das.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, S., Das, P. & Panigrahi, P.K. Coherent quantum state transfer in ultra-cold chemistry. Eur. Phys. J. D 76, 174 (2022). https://doi.org/10.1140/epjd/s10053-022-00503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00503-6

Navigation