Skip to main content
Log in

Periodic quenching modulated quantum phase transitions in transverse XY spin-chains

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The XY spin-chain in transverse fields under the modulation of periodic quenching has been investigated in this paper. We have obtained the exact expression of the Floquet effective Hamiltonian and analyzed the phase diagram, the corresponding critical properties, as well as geometric phase of the system. Our results show that the critical properties and phase diagram of the spin-chain can be modulated by the periodic quenching. We also considered the central spin system’s Loschmidt echo coupling to such spin-chain and showed that the Loschmidt echo can be used to detect the new critical points of the effective system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.].

References

  1. S. Sachdev, Quantum phase transitions. Phys. World 12(4), 33 (1999)

    Article  Google Scholar 

  2. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (American Association of Physics Teachers, New York, 2002)

    MATH  Google Scholar 

  3. V. Vedral, Introduction to Quantum Information Science (Oxford University Press on Demand, Oxford, 2006)

    Book  MATH  Google Scholar 

  4. T.J. Osborne, M.A. Nielsen, Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)

    Article  ADS  Google Scholar 

  6. A. Osterloh, L. Amico, G. Falci, R. Fazio, Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)

    Article  ADS  Google Scholar 

  7. L.-A. Wu, M.S. Sarandy, D. Lidar, Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93(25), 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Verstraete, M. Popp, J.I. Cirac, Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92(2), 027901 (2004)

    Article  ADS  Google Scholar 

  9. X. Yi, H. Cui, L. Wang, Entanglement induced in spin-1/2 particles by a spin chain near its critical points. Phys. Rev. A 74(5), 054102 (2006)

    Article  ADS  Google Scholar 

  10. Z. Sun, X. Wang, C. Sun, Disentanglement in a quantum-critical environment. Phys. Rev. A 75(6), 062312 (2007)

    Article  ADS  Google Scholar 

  11. H. Quan, Z. Song, X.F. Liu, P. Zanardi, C.-P. Sun, Decay of loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96(14), 140604 (2006)

    Article  ADS  Google Scholar 

  12. P. Zanardi, H. Quan, X. Wang, C. Sun, Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75(3), 032109 (2007)

    Article  ADS  Google Scholar 

  13. S. Sharma, V. Mukherjee, A. Dutta, Study of loschmidt echo for a qubit coupled to an xy-spin chain environment. Eur. Phys. J. B 85(5), 1–8 (2012)

    Article  Google Scholar 

  14. D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio, Decoherence induced by interacting quantum spin baths. Phys. Rev. A 75(3), 032333 (2007)

    Article  ADS  Google Scholar 

  15. F.M. Cucchietti, S. Fernandez-Vidal, J.P. Paz, Universal decoherence induced by an environmental quantum phase transition. Phys. Rev. A 75(3), 032337 (2007)

    Article  ADS  Google Scholar 

  16. C. Cormick, J.P. Paz, Decoherence induced by a dynamic spin environment: the universal regime. Phys. Rev. A 77(2), 022317 (2008)

    Article  ADS  Google Scholar 

  17. L.C. Venuti, P. Zanardi, Unitary equilibrations: probability distribution of the Loschmidt echo. Phys. Rev. A 81(2), 022113 (2010)

    Article  ADS  Google Scholar 

  18. L.C. Venuti, N.T. Jacobson, S. Santra, P. Zanardi, Exact infinite-time statistics of the Loschmidt echo for a quantum quench. Phys. Rev. Lett. 107(1), 010403 (2011)

    Article  Google Scholar 

  19. B. Damski, H.T. Quan, W.H. Zurek, Critical dynamics of decoherence. Phys. Rev. A 83(6), 062104 (2011)

    Article  ADS  Google Scholar 

  20. T. Nag, U. Divakaran, A. Dutta, Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points. Phys. Rev. B 86(2), 020401 (2012)

    Article  ADS  Google Scholar 

  21. V. Mukherjee, S. Sharma, A. Dutta, Loschmidt echo with a nonequilibrium initial state: early-time scaling and enhanced decoherence. Phys. Rev. B 86(2), 020301 (2012)

    Article  ADS  Google Scholar 

  22. S. Sharma, A. Russomanno, G.E. Santoro, A. Dutta, Loschmidt echo and dynamical fidelity in periodically driven quantum systems. EPL (Europhys. Lett.) 106(6), 67003 (2014)

    Article  ADS  Google Scholar 

  23. P. Zanardi, N. Paunković, Ground state overlap and quantum phase transitions. Phys. Rev. E 74(3), 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.C. Carollo, J.K. Pachos, Geometric phases and criticality in spin-chain systems. Phys. Rev. Lett. 95(15), 157203 (2005)

    Article  ADS  Google Scholar 

  25. S.-L. Zhu, Scaling of geometric phases close to the quantum phase transition in the x y spin chain. Phys. Rev. Lett. 96(7), 077206 (2006)

    Article  ADS  Google Scholar 

  26. X. Yi, W. Wang, Geometric phases induced in auxiliary qubits by many-body systems near their critical points. Phys. Rev. A 75(3), 032103 (2007)

    Article  ADS  Google Scholar 

  27. Z.-G. Yuan, P. Zhang, S.-S. Li, Loschmidt echo and berry phase of a quantum system coupled to an x y spin chain: proximity to a quantum phase transition. Phys. Rev. A 75(1), 012102 (2007)

    Article  ADS  Google Scholar 

  28. S. Sarkar, Quantization of geometric phase with integer and fractional topological characterization in a quantum ising chain with long-range interaction. Sci. Rep. 8(1), 1–20 (2018)

    Article  Google Scholar 

  29. S. Pancharatnam, Generalized theory of interference and its applications, in Proceedings of the Indian Academy of Sciences-Section A, vol. 44 (Springer, 1956), pp. 398–417

  30. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58(16), 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Samuel, R. Bhandari, General setting for berry’s phase. Phys. Rev. Lett. 60(23), 2339 (1988)

  33. A.K. Pati, A. Joshi, Interpretation of geometric phase via geometric distance and length during cyclic evolution. Phys. Rev. A 47(1), 98 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Sjöqvist, A.K. Pati, A. Ekert, J.S. Anandan, M. Ericsson, D.K. Oi, V. Vedral, Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85(14), 2845 (2000)

    Article  ADS  Google Scholar 

  35. D. Tong, E. Sjöqvist, L.C. Kwek, C.H. Oh, Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93(8), 080405 (2004)

    Article  ADS  Google Scholar 

  36. D.J. Thouless, P. Ao, Q. Niu, Transverse force on a quantized vortex in a superfluid. Phys. Rev. Lett. 76(20), 3758 (1996)

    Article  ADS  Google Scholar 

  37. D. Arovas, J. Schrieffer, F. Wilczek, Phys. Rev. Lett. 53(722), 11 (1984)

    Google Scholar 

  38. Q.-H. Wang, Theory of doped mott insulators: duality between pairing and magnetism. Phys. Rev. Lett. 92(5), 057003 (2004)

    Article  ADS  Google Scholar 

  39. R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3), 899 (1994)

    Article  ADS  Google Scholar 

  40. Q. Niu, X. Wang, L. Kleinman, W.-M. Liu, D. Nicholson, G. Stocks, Adiabatic dynamics of local spin moments in itinerant magnets. Phys. Rev. Lett. 83(1), 207 (1999)

    Article  ADS  Google Scholar 

  41. A. Morpurgo, J. Heida, T. Klapwijk, B. Van Wees, G. Borghs, Ensemble-average spectrum of Aharonov–Bohm conductance oscillations: evidence for spin-orbit-induced berry’s phase. Phys. Rev. Lett. 80(5), 1050 (1998)

  42. P. Zanardi, M. Rasetti, Holonomic quantum computation. Phys. Lett. A 264(2–3), 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Pachos, P. Zanardi, M. Rasetti, Non-abelian berry connections for quantum computation. Phys. Rev. A 61(1), 010305 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Geometric quantum computation using nuclear magnetic resonance. Nature 403(6772), 869–871 (2000)

    Article  ADS  Google Scholar 

  45. L.-M. Duan, J.I. Cirac, P. Zoller, Geometric manipulation of trapped ions for quantum computation. Science 292(5522), 1695–1697 (2001)

    Article  ADS  Google Scholar 

  46. S.-L. Zhu, Z. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89(9), 097902 (2002)

    Article  ADS  Google Scholar 

  47. S.-L. Zhu, Z. Wang, Unconventional geometric quantum computation. Phys. Rev. Lett. 91(18), 187902 (2003)

    Article  ADS  Google Scholar 

  48. C. Chen, J.-H. An, H.-G. Luo, C. Sun, C. Oh, Floquet control of quantum dissipation in spin chains. Phys. Rev. A 91(5), 052122 (2015)

    Article  ADS  Google Scholar 

  49. D. Vorberg, W. Wustmann, R. Ketzmerick, A. Eckardt, Generalized Bose–Einstein condensation into multiple states in driven-dissipative systems. Phys. Rev. Lett. 111(24), 240405 (2013)

    Article  ADS  Google Scholar 

  50. P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, Non-abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109(14), 145301 (2012)

    Article  ADS  Google Scholar 

  51. N.H. Lindner, G. Refael, V. Galitski, Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7(6), 490–495 (2011)

    Article  Google Scholar 

  52. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic floquet topological insulators. Nature 496(7444), 196–200 (2013)

    Article  ADS  Google Scholar 

  53. J. Cayssol, B. Dóra, F. Simon, R. Moessner, Floquet Topological Insulators (Wiley, New York, 2013)

    Book  Google Scholar 

  54. M. Nakagawa, N. Kawakami, Nonequilibrium topological phase transitions in two-dimensional optical lattices. Phys. Rev. A 89(1), 013627 (2014)

    Article  ADS  Google Scholar 

  55. Q.-J. Tong, J.-H. An, J. Gong, H.-G. Luo, C. Oh, Generating many majorana modes via periodic driving: a superconductor model. Phys. Rev. B 87(20), 201109 (2013)

    Article  ADS  Google Scholar 

  56. L. Guo, M. Marthaler, G. Schön, Phase space crystals: a new way to create a quasienergy band structure. Phys. Rev. Lett. 111(20), 205303 (2013)

    Article  ADS  Google Scholar 

  57. J.-I. Inoue, A. Tanaka, Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105(1), 017401 (2010)

    Article  ADS  Google Scholar 

  58. T. Kitagawa, E. Berg, M. Rudner, E. Demler, Topological characterization of periodically driven quantum systems. Phys. Rev. B 82(23), 235114 (2010)

    Article  ADS  Google Scholar 

  59. T. Kitagawa, M.S. Rudner, E. Berg, E. Demler, Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010)

    Article  ADS  Google Scholar 

  60. M.S. Rudner, N.H. Lindner, E. Berg, M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3(3), 031005 (2013)

    Google Scholar 

  61. A. Gómez-León, G. Platero, Topological phases in adiabatic and nonadiabatic driven systems. Phys. Rev. B 86(11), 115318 (2012)

    Article  ADS  Google Scholar 

  62. A. Gómez-León, G. Platero, Floquet–Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110(20), 200403 (2013)

    Article  ADS  Google Scholar 

  63. B. Dóra, J. Cayssol, F. Simon, R. Moessner, Optically engineering the topological properties of a spin hall insulator. Phys. Rev. Lett. 108(5), 056602 (2012)

    Article  ADS  Google Scholar 

  64. D.E. Liu, A. Levchenko, H.U. Baranger, Floquet majorana fermions for topological qubits in superconducting devices and cold-atom systems. Phys. Rev. Lett. 111(4), 047002 (2013)

    Article  ADS  Google Scholar 

  65. S. Suzuki, T. Nag, A. Dutta, Dynamics of decoherence: universal scaling of the decoherence factor. Phys. Rev. A 93(1), 012112 (2016)

    Article  ADS  Google Scholar 

  66. T. Nag, Excess energy and decoherence factor of a qubit coupled to a one-dimensional periodically driven spin chain. Phys. Rev. E 93(6), 062119 (2016)

    Article  ADS  Google Scholar 

  67. M. Benito, A. Gómez-León, V. Bastidas, T. Brandes, G. Platero, Floquet engineering of long-range p-wave superconductivity. Phys. Rev. B 90(20), 205127 (2014)

    Article  ADS  Google Scholar 

  68. A. Russomanno, A. Silva, G.E. Santoro, Periodic steady regime and interference in a periodically driven quantum system. Phys. Rev. Lett. 109(25), 257201 (2012)

    Article  ADS  Google Scholar 

  69. W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition. Phys. Rev. Lett. 95(10), 105701 (2005)

    Article  ADS  Google Scholar 

  70. M. Collura, D. Karevski, Critical quench dynamics in confined systems. Phys. Rev. Lett. 104(20), 200601 (2010)

    Article  ADS  Google Scholar 

  71. A. Bermudez, D. Patane, L. Amico, M. Martin-Delgado, Topology-induced anomalous defect production by crossing a quantum critical point. Phys. Rev. Lett. 102(13), 135702 (2009)

    Article  ADS  Google Scholar 

  72. P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. Phys. Rev. Lett. 102(13), 130603 (2009)

  73. A. Silva, Statistics of the work done on a quantum critical system by quenching a control parameter. Phys. Rev. Lett. 101(12), 120603 (2008)

    Article  ADS  Google Scholar 

  74. Y. Niu, S.B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, S. Chakravarty, Majorana zero modes in a quantum ising chain with longer-ranged interactions. Phys. Rev. B 85(3), 035110 (2012)

    Article  ADS  Google Scholar 

  75. T.-S. Xiong, J. Gong, J.-H. An, Towards large-chern-number topological phases by periodic quenching. Phys. Rev. B 93(18), 184306 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 11475037 and 11574041 and supported by the Fundamental Research Funds for the Central Universities under Grant No. DUT19LK38.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study equally.

Corresponding author

Correspondence to Lin-Cheng Wang.

6 Appendix

6 Appendix

In order to obtain the effective Hamiltonian (9) in the main text, which have the following form,

$$\begin{aligned} e^{i a_1 ({\mathbf{n_1}}\cdot \sigma )}e^{i a_2({\mathbf{n_2}}\cdot \sigma )}=e^{i a (\mathbf{n}\cdot \sigma )}, \end{aligned}$$
(31)

where \({\mathbf{n_1}}, {\mathbf{n_2}}, \mathbf{n}\) are unit vectors, we use the following formulas

$$\begin{aligned}&e^{i a(\mathbf{n}\cdot \sigma )}= \cos a + i (\mathbf{n}\cdot \sigma ) \sin a, \\&({\mathbf{n_1}}\cdot \sigma )({\mathbf{n_2}}\cdot \sigma )={\mathbf{n_1}}\cdot {\mathbf{n_2}}+i ({\mathbf{n_1}}\times {\mathbf{n_2}})\cdot \sigma , \end{aligned}$$

and obtain

$$\begin{aligned}&e^{i a_1({\mathbf{n_1}}\cdot \sigma )}e^{i a_2({\mathbf{n_2}}\cdot \sigma )} \nonumber \\= & {} [\cos a_1 + i ({\mathbf{n_1}}\cdot \sigma ) \sin a_1 ][\cos a_2 + i ({\mathbf{n_2}}\cdot \sigma ) \sin a_2] \nonumber \\= & {} \cos a_1\cos a_2-({\mathbf{n_1}}\cdot \sigma )({\mathbf{n_2}}\cdot \sigma )\sin a_1\sin a_2 \nonumber \\&+i({\mathbf{n_1}}\cdot \sigma )\sin a_1\cos a_2+i({\mathbf{n_2}}\cdot \sigma )\cos a_1\sin a_2 \nonumber \\= & {} \cos a_1\cos a_2-{\mathbf{n_1}}\cdot {\mathbf{n_2}}\sin a_1\sin a_2 \nonumber \\&-i \sin a_1\sin a_2({\mathbf{n_1}}\times {\mathbf{n_2}})\cdot \sigma \nonumber \\&+ i({\mathbf{n_1}}\cdot \sigma )\sin a_1\cos a_2+i({\mathbf{n_2}}\cdot \sigma )\cos a_1\sin a_2. \end{aligned}$$
(32)

By comparing the real part and the image part with the equation \(e^{i a(\mathbf{n}\cdot \sigma )}= \cos a + i (\mathbf{n}\cdot \sigma ) \sin a \), we will obtain the relations between the parameters, i.e.,

$$\begin{aligned}&\cos a=\cos a_1 \cos a_2- {\mathbf{n_1}}\cdot {\mathbf{n_2}}\sin a_1\sin a_2, \nonumber \\&{\mathbf{n}}=\frac{1}{\sin a} ({\mathbf{n_1}}\sin a_1\cos a_2 +{\mathbf{n_2}}\sin a_2\cos a_1\nonumber \\&\quad - {\mathbf{n_1}}\times {\mathbf{n_2}}\sin a_1\sin a_2 ). \end{aligned}$$
(33)

In the main text, we can re-express the Hamiltonian as

$$\begin{aligned} {{{\mathcal {H}}}}_{0}(\lambda _{1})=\varepsilon _{k,1}\mathbf{\sigma }\cdot \mathbf{n_{1}}.\nonumber \\ {{{\mathcal {H}}}}_{0}(\lambda _{2})=\varepsilon _{k,2}\mathbf{\sigma }\cdot \mathbf{n_{2}}. \end{aligned}$$
(34)

with

$$\begin{aligned} \varepsilon _{k,1} = \sqrt{(\lambda _1-\cos k)^2+\gamma ^2\sin ^2k } , \nonumber \\ \varepsilon _{k,2} = \sqrt{(\lambda _2-\cos k)^2+\gamma ^2\sin ^2k } . \end{aligned}$$
(35)

and

$$\begin{aligned} {\mathbf{n_{1}}}=\left( 0, \frac{-\gamma \sin k}{ \varepsilon _{k,1}}, \frac{\lambda _1-\cos k}{ \varepsilon _{k,1}}\right) , \nonumber \\ {\mathbf{n_{2}}}=\left( 0, \frac{-\gamma \sin k}{ \varepsilon _{k,2}}, \frac{\lambda _2-\cos k}{ \varepsilon _{k,2}}\right) , \end{aligned}$$
(36)

then, substitute this expression into formula (33), one can obtain the values of parameters \(\varepsilon _k\) and \(\mathbf {n}\) in the effective Hamiltonian \(\mathcal{H}_{\text {eff}}=\xi _{k}{\varvec{\sigma }}\cdot \mathbf{n}=\mathcal{H}_{\text {eff},x}\sigma _x+{{{\mathcal {H}}}}_{\text {eff},y}\sigma _y+\mathcal{H}_{\text {eff},z}\sigma _z\), i.e.,

$$\begin{aligned} \xi _{k}= & {} \frac{1}{T} \arccos \Big [ \cos \varepsilon _{k,1}T_1\cos \varepsilon _{k,2}T_2 \nonumber \\&- \sin \varepsilon _{k,1}T_1\sin \varepsilon _{k,2}T_2 \nonumber \\&\times \frac{\gamma ^2\sin ^2k+(\lambda _{1}-\cos k)(\lambda _{2}-\cos k)}{\varepsilon _{k,1}\varepsilon _{k,2}} \Big ] , \nonumber \\ {{{\mathcal {H}}}}_{\text {eff},x}= & {} \frac{\xi _k}{\sin {\xi _{k}T}}\Big [ {-}\sin \varepsilon _{k,1}T_1 \sin \varepsilon _{k,2}T_2 \nonumber \\&\frac{\gamma \sin k (\lambda _1-\lambda _2)}{\varepsilon _{k,1}\varepsilon _{k,2}}\Big ], \nonumber \\ {{{\mathcal {H}}}}_{\text {eff},y}= & {} \frac{\xi _k}{\sin {\xi _{k}T}}\Big [\sin \varepsilon _{k,1}T_1 \cos \varepsilon _{k,2}T_2\frac{\gamma \sin k}{\varepsilon _{k,1}}\nonumber \\&+\sin \varepsilon _{k,2}T_2 \cos \varepsilon _{k,1}T_1\frac{\gamma \sin k}{\varepsilon _{k,2}}\Big ],\nonumber \\ {{{\mathcal {H}}}}_{ \text {eff},z}= & {} \frac{\xi _k}{\sin {\xi _{k}T}}\Big [{-} \sin \varepsilon _{k,1}T_1 \cos \varepsilon _{k,2}T_2 \frac{\lambda _1-\cos k}{\varepsilon _{k,1}}\nonumber \\&- \cos \varepsilon _{k,1}T_1 \sin \varepsilon _{k,2}T_2 \frac{\lambda _2-\cos k}{\varepsilon _{k,2}} \Big ] . \nonumber \\ \end{aligned}$$
(37)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Luan, LN. & Wang, LC. Periodic quenching modulated quantum phase transitions in transverse XY spin-chains. Eur. Phys. J. D 76, 146 (2022). https://doi.org/10.1140/epjd/s10053-022-00485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00485-5

Navigation