Skip to main content
Log in

Revealing hidden steering nonlocality in a quantum network

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2022

This article has been updated

Abstract

By combining two objects with no quantum effect one can get an object with quantum effect. Such a phenomenon, often referred to as activation, has been analyzed for the notion of steering nonlocality. Activation of steering nonlocality is observed for different classes of mixed entangled states in linear network scenarios. Characterization of arbitrary two qubit states, in ambit of steering activation in network scenarios has been provided in this context. Using the notion of reduced steering, instances of steerability activation are also observed in nonlinear network. Present analysis involves three measurement settings scenario (for both trusted and untrusted parties) where steering nonlocality is distinguishable from Bell nonlocality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: The manuscript has no data associated with it].

Change history

References

  1. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. R. Cleve, H. Buhrman, Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)

    Article  ADS  Google Scholar 

  4. D. Mayers, A. Yao, Quantum cryptography with imperfect apparatus, in Proceedings of the 39th IEEE Symposium on Foundations of Computer Science IEEE Computer Society, pp. 503-509, Los Alamitos (1998)

  5. C. Brukner et al., Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Barrett et al., Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71, 022101 (2005)

    Article  ADS  Google Scholar 

  7. A. Acín et al., Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  8. S. Pironio et al., Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  9. R. Colbeck, A. Kent, Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 44, 095305 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.D. Bancal, N. Gisin, Y.C. Liang, S. Pironio, Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  11. R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  12. J. Barrett, Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65, 042302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.L. Almeida et al., Noise robustness of the nonlocality of entangled quantum states. Phys. Rev. Lett. 99, 040403 (2007)

    Article  ADS  Google Scholar 

  14. R. Augusiak, M. Demianowicz, A. Acín, Local hidden-variable models for entangled quantum states. J. Phys. A: Math. Theor. 47, 424002 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A.F. Ducuara, J. Madronero, J.H. Reina, On the activation of quantum nonlocality. Universitas Scientiarum 21(2), 129–158 (2016)

    Article  Google Scholar 

  16. S. Popescu, Bell inequalities and density matrices: Revealing “Hidden’’ nonlocality. Phys. Rev. Lett. 74, 2619 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. Gisin, Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2011)

    Article  Google Scholar 

  19. M. Navascues, T. Vertesi, Activation of nonlocal quantum resources. Phys. Rev. Lett. 106, 060403 (2011)

    Article  ADS  Google Scholar 

  20. A. Peres, Collective tests for quantum nonlocality. Phys. Rev. A 54, 2685–2689 (1996)

    Article  ADS  Google Scholar 

  21. L. Masanes, Asymptotic violation of bell inequalities and distillability. Phys. Rev. Lett. 97, 050503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. L. Masanes, Y.C. Liang, A.C. Doherty, All bipartite entangled states display some hidden nonlocality. Phys. Rev. Lett. 100, 090403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Y.C. Liang, L. Masanes, D. Rosset, All entangled states display some hidden nonlocality. Phys. Rev. A 8(6), 052115 (2012)

    Article  ADS  Google Scholar 

  24. A. Sen(De), U. Sen, C. Brukner, V. Buzek, M. Zukowski, Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality. Phys. Rev. A 72, 042310 (2005)

  25. D. Cavalcanti, M.L. Almeida, V. Scarani, A. Acín, Quantum networks reveal quantum nonlocality. Nat. Comms 2, 184 (2011)

    Article  ADS  Google Scholar 

  26. D. Cavalcanti, R. Rabelo, V. Scarani, Nonlocality tests enhanced by a third observer. Phys. Rev. Lett. 108, 040402 (2012)

    Article  ADS  Google Scholar 

  27. A. Wojcik, J. Modlawska, A. Grudka, M. Czechlewski, Violation of Clauser–Horne–Shimony–Holt inequality for states resulting from entanglement swapping. Phys. Lett. A 374, 4831 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. W. Klobus, W. Laskowski, M. Markiewicz, A. Grudka, Nonlocality activation in entanglement-swapping chains. Phys. Rev. A 86, 020302(R) (2012)

    Article  ADS  Google Scholar 

  29. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  30. M. Zukowski, A. Zeilinger, H. Weinfurter, Entangling photons radiated by independent pulsed sources. Ann. New York Acad. Sci. 755, 91 (1995)

    Article  ADS  Google Scholar 

  31. J.W. Pan, D. Bowmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. C.H. Bennett et al., Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. B. Paul, K. Mukherjee, D. Sarkar, Revealing hidden genuine tripartite nonlocality. Phys. Rev. A. 94, 052101 (2016)

    Article  ADS  Google Scholar 

  34. E. Schrodinger, Discussions on probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  35. E. Schrodinger, Probability relations between separated systems. Proc. Camb. Phil. Soc. 32, 446 (1936)

    Article  ADS  MATH  Google Scholar 

  36. S.J. Jones, H.M. Wiseman, A.C. Doherty, Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M.D. Reid, Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989)

    Article  ADS  Google Scholar 

  38. Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  39. E.G. Cavalcanti, S.J. Jones, H.M. Wiseman, M.D. Reid, Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  40. S.P. Walborn et al., Revealing hidden Einstein–Podolsky–Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)

    Article  ADS  Google Scholar 

  41. M. Zukowski, A. Dutta, Z. Yin, Geometric Bell-like inequalities for steering. Phys. Rev. A 91, 032107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Schneeloch et al., Einstein–Podolsky–Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013)

    Article  ADS  Google Scholar 

  43. S. Jevtic, M.J.W. Hall, M.R. Anderson, M. Zwierz, H.M. Wiseman, Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32, A40 (2015)

    Article  ADS  Google Scholar 

  44. F. Verstraete , A study Of Entanglement In Quantum Information Theory, Ph.D. Thesis, Katholieke universiteit Leuven (2002)

  45. S. Jevtic, M. Puesy, D. Jenning, T. Rudolph, Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

  46. S.J. Jones, H.M. Wiseman, Nonlocality of a single photon: Paths to an Einstein–Podolsky–Rosen-steering experiment. Phys. Rev. A. 84, 012110 (2011)

    Article  ADS  Google Scholar 

  47. A.C.S. Costa, R.M. Angelo, Quantification of Einstein–Podolsky–Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R) (2016)

    Article  ADS  Google Scholar 

  48. D. Collins, N. Gisin, A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A: Math. Gen. 37, 1775–1787 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C. Branciard et al., One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)

    Article  ADS  Google Scholar 

  50. X. Ma, N. Lutkenhaus, Improved data post-processing in quantum key distribution and application to loss thresholds in device independent QKD, 2012. Quantum Inf. Comput. 12, 0203 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Y. Wang et al., Finite-key analysis for one-sided device-independent quantum key distribution. Phys. Rev. A 88, 052322 (2013)

    Article  ADS  Google Scholar 

  52. C. Zhou et al., Finite-key bound for semi-device-independent quantum key distribution. Opt. Express 25, 16971 (2017)

    Article  ADS  Google Scholar 

  53. E. Kaur, M.M. Wilde, A. Winter, Fundamental limits on key rates in device-independent quantum key distribution. New J. Phys. 22, 023039 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  54. N. Walk et al., Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica 3, 634 (2016)

    Article  ADS  Google Scholar 

  55. Y.Z. Law, L.P. Thinh, J.D. Bancal, V. Scarani, Quantum randomness extraction for various levels of characterization of the devices. J. Phys. A 47, 424028 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. E. Passaro, E.G. Cavalcanti, P. Skrzypczyk, A. Acín, Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. N. J. Phys. 17, 113010 (2015)

    Article  MATH  Google Scholar 

  57. P. Skrzypczyk, D. Cavalcanti, Maximal randomness generation from steering inequality violations using Qudits. Phys. Rev. Lett. 120, 260401 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  58. F.J. Curchod et al., Unbounded randomness certification using sequences of measurements. Phys. Rev. A 95, 020102 (2017)

    Article  ADS  Google Scholar 

  59. B. Coyle, M.J. Hoban, E. Kashefi, One-sided device-independent certification of unbounded random numbers. EPTCS 273, 14–26 (2018)

    Article  MathSciNet  Google Scholar 

  60. M. Piani, J. Watrous, Necessary and sufficient quantum information characterization of Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. K. Sun et al., Demonstration of Einstein–Podolsky–Rosen steering with nhanced subchannel discrimination. NPJ Quantum Inf. 4, 12 (2018)

  62. P. Horodecki, M. Horodecki, R. Horodecki, Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056–1059 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. D. Mayers, A. Yao, in Proceedings of the 39th IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, p. 503. Los Alamitos CA, USA (1998)

  64. A. Acín, N. Gisin, L.I. Masanes, From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  MATH  Google Scholar 

  65. N. Brunner, N. Linden, Connection between Bell nonlocality and Bayesian game theory. Nature Commun. 4, 2057 (2013)

    Article  ADS  Google Scholar 

  66. A. Garg, N.D. Mermin, Correlation inequalities and hidden variables. Phys. Rev. Lett. 49, 1220 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  67. I. Pitowsky, K. Svozil, Optimal tests of quantum nonlocality. Phys. Rev. A 64, 014102 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  68. R. Uola, A.C.S. Costa, H.C. Nguyen, O. Guhne, Quantum steering. Rev. Mod. Phys. 92, 015001-1-015001–40 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  69. J. Modlawska, A. Grudka, Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)

    Article  ADS  Google Scholar 

  70. J. Bowles, F. Hirsch, M.T. Quintino, N. Brunner, Sufficient criterion for guaranteeing that a two-qubit state is unsteerable. Phys. Rev. A 93, 022121 (2016)

    Article  ADS  Google Scholar 

  71. W. Song, M. Yang, Z.L. Cao, Sufficient criterion for guaranteeing that a two-qubit state is unsteerable. Phys. Rev. A 89, 014303 (2014)

    Article  ADS  Google Scholar 

  72. S.S. Bhattacharya et al., Absolute non-violation of a three-setting steering inequality by two-qubit states. Quantum Inf. Process 17, 3 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. J.D.M. Benjamin et al., Network quantum steering. Phys. Rev. Lett. 127, 170405 (2021)

    Article  MathSciNet  Google Scholar 

  74. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  75. L. Masanes, Y.C. Liang, A.C. Doherty, All Bipartite entangled states display some hidden nonlocality. Phys. Rev. Lett. 100, 090403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. S.J. Jones, H.M. Wiseman, A.C. Doherty, Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

  77. N. Brunner, D. Cavalcanti, A. Salles, P. Skrzypczyk, Bound nonlocality and activation. Phys. Rev. Lett. 106, 020402 (2011)

  78. M. Navascues, T. Vertesi, Activation of nonlocal quantum resources. Phys. Rev. Lett. 106, 060403 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushiki Mukherjee.

Additional information

The original online version of this article was revised: The affiliation of the author Soma Mandal was incorrect.

Appendices

Appendix A

Proof of Theorem 1

Both \(\rho _{AB}^{'}\) [Eq. (17)] and \(\rho _{BC}^{'}\) [Eq.(18)] violate Eq. (5). Hence, \(\sum _{j=1}^3{\sqrt{\mathfrak {t}^2_{1jj}}},{\sqrt{\mathfrak {t}^2_{2jj}}}\le 1\) which imply that \(|\mathfrak {t}_{kjj}|\le 1,\forall k=1,2\) and \(j=1,2,3.\) Let \(\mathcal {V}_{b_1b_2}\) denote the correlation tensor of conditional state \(\rho _{AC}^{(b_1b_2)}.\) Now, two cases are considered: either one or both the parties have no non-null local Bloch vectors. In both the cases, \(Tr (\mathcal {V}_{b_1b_2}^T\mathcal {V}_{b_1b_2})= \sum _{k=1}^3(t_{1kk}t_{2kk})^2,\,\forall b_1,b_2=0,1.\) Hence, for each of \(\mathcal {V}_{b_1b_2},\) \(\sqrt{Tr (\mathcal {V}_{b_1b_2}^T\mathcal {V}_{b_1b_2})}\) takes the form:

$$\begin{aligned}&\sqrt{Tr (\mathcal {V}_{b_1b_2}^T\mathcal {V}_{b_1b_2})}=\sqrt{\sum _{k=1}^3(t_{1kk}t_{2kk})^2}\nonumber \\&\quad \le \sqrt{\sqrt{\sum _{k=1}^3}t^4_{1kk}.\sqrt{\sum _{k=1}^3}t^4_{2kk}}\nonumber \\&\quad \le \sqrt{\sqrt{\sum _{k=1}^3}t^2_{1kk}.\sqrt{\sum _{k=1}^3}t^2_{2kk}}\nonumber \\&\quad \le 1. \end{aligned}$$
(26)

The second inequality holds as \(|\mathfrak {t}_{kjj}|\le 1,\forall k=1,2\) and \(j=1,2,3\) and the last is due to the fact that none of the initial states satisfies Eq. (5). \(\square \)

Appendix B

Proof of Theorem 3

Here, \(\vec {u_1}=\vec {u_2}=\Theta .\) \(\rho _{AB}\) and \(\rho _{BC}\) thus have the form:

$$\begin{aligned} \rho _{AB}={\frac{1}{4}(\mathbb {I}_{2\times 2}+\mathbb {I}_2\otimes \vec {\mathfrak {v}_1}. \vec {\sigma }+\sum _{j_1,j_2=1}^{3}w_{1j_1j_2}\sigma _{j_1}\otimes \sigma _{j_2})}, \end{aligned}$$
$$\begin{aligned} \rho _{BC}={\frac{1}{4}(\mathbb {I}_{2\times 2}+\mathbb {I}_2\otimes \vec {\mathfrak {v}_2}. \vec {\sigma }+\sum _{j_1,j_2=1}^{3}w_{2j_1j_2}\sigma _{j_1}\otimes \sigma _{j_2})}, \end{aligned}$$

Let \(\Lambda \) [Eq. (20)] be applied on both \(\rho _{AB}\) and \(\rho _{BC}\) followed by local unitary operations(to diagonalize the correlation tensors). Let \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) denote the respective canonical forms [Eq. (22)] of \(\rho _{AB}\) and \(\rho _{BC}\) [70]:

$$\begin{aligned} {\rho _{AB}^{(2)}}= & {} {\frac{1}{4}(\mathbb {I}_{2\times 2}+\sum _{j=1}^{3}w_{1jj}^{''}\sigma _{j}\otimes \sigma _{j})}, \end{aligned}$$
(27)
$$\begin{aligned} {\rho _{BC}^{(2)}}= & {} {\frac{1}{4}(\mathbb {I}_{2\times 2}+\sum _{j=1}^{3}w_{2jj}^{''} \sigma _{j}\otimes \sigma _{j})}, \end{aligned}$$
(28)

Now \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) both satisfy unsteerability criterion given by Eq. (23). This in turn gives:

$$\begin{aligned} Max _{x_1,x_2,x_3}\sqrt{\sum _{j=1}^3}(x_jw_{kjj}^{''})^2\le \frac{1}{2},\,\,\,\,k=1,2 \end{aligned}$$
(29)

where \(\hat{x}=(x_1,x_2,x_3)\) denotes a unit vector. \(\square \)

We next perform maximization over \(\hat{x}\) so as to obtain a closed form of the unsteerability criterion in terms of elements of correlation tensors of the initial states \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\). Maximization over unit vector \(\hat{x}\): Taking \(\hat{x}=(\sin (\theta )\cos (\phi ), \sin (\theta )\sin (\phi ),\cos (\theta )),\) maximization problem in L.H.S. of Eq. (41) can be posed as:

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )} \end{aligned}$$
(30)

where,

$$\begin{aligned} {A(\theta ,\phi )}= & {} \sin ^2(\theta )(\cos ^2(\phi )(w_{k11}^{''})^2\nonumber \\&+\sin ^2(\phi )(w_{k22}^{''})^2)+\cos ^2(\theta )(w_{k33}^{''})^2\qquad \end{aligned}$$
(31)

Now for any \(g_1,g_2\ge 0,\) \(Max _{\kappa }(g_1\cos ^2(\kappa )+g_2\sin ^2(\kappa ))\) is \(g_1\) if \(g_1>g_2\) and \(g_2\) when \(g_2>g_1.\) This relation is used for maximizing \(A(\theta ,\phi ).\) In order to consider all possible values of \((w_{k11}^{''})^2,\) \((w_{k22}^{''})^2\) and \((w_{k33}^{''})^2,\) we consider the following cases:

Case1:\((w_{k11}^{''})^2>(w_{k22}^{''})^2\): Then \(Max _{\phi }A(\theta ,\phi )\) gives:

$$\begin{aligned} B(\theta )= {\sin ^2(\theta )(w_{k11}^{''})^2+\cos ^2(\theta )(w_{k33}^{''})^2} \end{aligned}$$
(32)

Subcase1: \((w_{k11}^{''})^2>(w_{k33}^{''})^2,i.e., \,(w_{k11}^{''})^2=Max _{j=1,2,3} (w_{kjj}^{''})^2:\) Then \(Max _{\theta }B(\theta )=(w_{k11}^{''})^2.\) Hence,

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )}=|w_{k11}^{''}|. \end{aligned}$$
(33)

Subcase2:\((w_{k11}^{''})^2<(w_{k33}^{''})^2,i.e., \, (w_{k22}^{''})^2<(w_{k11}^{''})^2<(w_{k33}^{''})^2:\,Then \,Max _{\theta }B(\theta )=(w_{k33}^{''})^2.\) Hence,

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )}=|w_{k33}^{''}|. \end{aligned}$$
(34)

Case2:\((w_{k11}^{''})^2<(w_{k22}^{''})^2\): Then \(Max _{\phi }A(\theta ,\phi )\) gives:

$$\begin{aligned} B(\theta )= {\sin ^2(\theta )(w_{k22}^{''})^2+\cos ^2(\theta )(w_{k33}^{''})^2} \end{aligned}$$
(35)

Subcase1:\((w_{k22}^{''})^2>(w_{k33}^{''})^2,i.e., \, (w_{k22}^{''})^2=Max _{j=1,2,3}(w_{kjj}^{''})^2:\) Then\(\quad Max _{\theta }B(\theta )=(w_{k22}^{''})^2.\) Hence,

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )}=|w_{k22}^{''}|. \end{aligned}$$
(36)

Subcase2:\((w_{k22}^{''})^2<(w_{k33}^{''})^2, i.e., \,(w_{k11}^{''})^2<(w_{k22}^{''})^2<(w_{k33}^{''})^2:\,Then \, Max _{\theta }B(\theta )= (w_{k33}^{''})^2.\) Hence,

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )}=|w_{k33}^{''}|. \end{aligned}$$
(37)

So, combining all cases, we get:

$$\begin{aligned} Max _{\theta ,\phi }\sqrt{A(\theta ,\phi )}=Max _{j=1}^{3}|w_{kjj}^{''}|,\,\,k=1,2.\qquad \end{aligned}$$
(38)

So, the unsteerability criterion [Eq. (41)] turns out to be:

$$\begin{aligned} Max _{j=1,2,3}|w_{kjj}^{''}|\le \frac{1}{2}. \end{aligned}$$
(39)

where \(k=1,2\) correspond to states \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\), respectively. So \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) and therefore \(\rho _{AB}\) and \(\rho _{BC}\) are unsteerable. Steerability of state remaining invariant under application of linear map [Eq. (20)], considering the canonical forms \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) as the initial states used in the network. Depending on the output of BSM obtained by Bob (and result communicated to Alice and Charlie), the conditional states shared between Alice and Charlie are given by \(\rho _{AC}^{ij},\,i,j=0,1\) (see Table 4). \(\forall i,j,\) \(\rho _{AC}^{ij}\) has null local Blochs and diagonal correlation tensor.

Table 4 State parameters of each of the four conditional states are specified here

Hence, for each of the conditional states, L.H.S. of Eq. (23) turns out to be:

$$\begin{aligned} Max _{x_1,x_2,x_3}\sqrt{\sum _{j=1}^3(x_jw_{1jj}^{''}w_{2jj}^{''})^2} \end{aligned}$$
(40)

Following the same procedure of maximization as above, the optimal expression of the maximization problem [Eq. (40)] is given by:

$$\begin{aligned} Max _{j=1,2,3}|w_{1jj}^{''}w_{2jj}^{''}| \end{aligned}$$

Using Eq. (39), the maximum value of Eq. (40) turns out to be \(\frac{1}{4}\). Each of the four conditional states thus satisfies the unsteerability criterion [Eq. (23)]. So if both the initial states satisfy Eq. (23) and have null local Bloch vector (corresponding to first party), then none of the conditional states generated in the network is steerable. Hence genuine activation of steering does not occur. States satisfies Eq. (5).

Appendix C

Details of the numerical observation given in Sect. 6: Without loss of any generality, of two initial states, let \(\rho _{BC}\) has non-null Bloch vector corresponding to the first party, i.e., \(\vec {u_1}=\Theta ,\vec {u_2}\ne \Theta .\) \(\rho _{BC}\) thus has the form:

$$\begin{aligned} \rho _{BC}= & {} \frac{1}{4}(\mathbb {I}_{2\times 2}+\vec {\mathfrak {u}_2}.\vec {\sigma }\times \mathbb {I}_{2} +\mathbb {I}_2\otimes \vec {\mathfrak {v}_2}.\vec {\sigma }\\&+\sum _{j_1,j_2=1}^{3}w_{2j_1j_2}\sigma _{j_1}\otimes \sigma _{j_2}), \end{aligned}$$

After applying \(\Lambda \) [Eq. (20)] followed by local unitary operations, the canonical form \(\rho _{AB}^{(2)}\) of \(\rho _{AB}\) is given by Eq. (27), whereas that of \(\rho _{BC}\) is given by:

$$\begin{aligned} {\rho _{BC}^{(2)}}={\frac{1}{4}(\mathbb {I}_{2\times 2}+\vec {\mathfrak {u}_2^{''}}.\vec {\sigma }\times \mathbb {I}_{2} +\sum _{j=1}^{3}w_{2jj}^{''}\sigma _{j}\otimes \sigma _{j})},\qquad \end{aligned}$$
(41)

Now \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) both satisfy unsteerability criterion given by Eq. (23). This in turn gives:

$$\begin{aligned} Max _{x_1,x_2,x_3}\sqrt{\sum _{j=1}^3(x_jw_{1jj}^{''})^2}\le \frac{1}{2} \end{aligned}$$
(42)

and

$$\begin{aligned} Max _{x_1,x_2,x_3}(\vec {\mathfrak {u}_2^{''}}.\hat{x})^2+ 2\sqrt{\sum _{j=1}^3(x_jw_{2jj}^{''})^2}\le 1 \end{aligned}$$
(43)

with \(\hat{x}=(x_1,x_2,x_3)\) denoting unit vector. While the closed form of Eq. (42) is given by Eq. (39) for \(k=1,\) the same for Eq. (43) is hard to derive owing to the complicated form of the maximization problem involved in it. Now as \(\rho _{BC}^{(2)}\) satisfies an unsteerability criterion [Eq. (43)] so it is unsteerable and consequently violates Eq. (5):

$$\begin{aligned} \sum _{j=1}^3(w_{2jj}^{''})^2\le 1 \end{aligned}$$
(44)

As discussed above, the canonical forms \(\rho _{AB}^{(2)}\) and \(\rho _{BC}^{(2)}\) as the initial states used in the network. Depending on Bob’s output, the conditional states shared between Alice and Charlie are given by \(\rho _{AC}^{ij},\,i,j=0,1\) (see Table 5).

Table 5 State parameters of each of the four conditional states are specified here

Let us consider \(\rho _{AC}^{00}.\) Using state parameters (Table 5) of \(\rho _{AC}^{00},\) L.H.S. of Eq. (23) becomes:

$$\begin{aligned}&Max _{x_1,x_2,x_3}((x_1\mathfrak {u}_{21}^{''}w_{111}^{''}-x_2\mathfrak {u}_{22}^{''}w_{122}^{''} +x_3\mathfrak {u}_{23}^{''}w_{133}^{''})^2\nonumber \\&\quad +sqrt{\sum _{j=1}^3(x_jw_{1jj}^{''}w_{2jj}^{''})^2}), \end{aligned}$$
(45)

where \(\mathfrak {u}_{21}^{''},\mathfrak {u}_{22}^{''},\mathfrak {u}_{23}^{''}\) are the components of real valued vector Bloch vector \(\vec {\mathfrak {u}_{2}^{''}}.\) In Eq. (45), maximization is to be performed over \(x_1,x_2,x_3\), whereas the state parameters are arbitrary. Now the expression in Eq. (45) is numerically maximized over all the state parameters involved and also \(x_1,x_2,x_3\) under the following restrictions:

  • \(w_{111}^{''}\le \frac{1}{2}\)

  • \(w_{122}^{''}\le \frac{1}{2}\)

  • \(w_{133}^{''}\le \frac{1}{2}\)

  • \(\sum _{j=1}^3(w_{2jj}^{''})^2\le 1.\)

While the first three restrictions are due to the unsteerability of \(\rho _{AB}^{(2)},\) i.e., given by Eq. (39) for \(k=1,\) the last restriction is provided by Eq. (44)(a consequence of unsteerability of \(\rho _{BC}^{(2)}\)). Maximum value of the above maximization problem [Eq. (45)] turns out to be 0.75, corresponding maxima (alternate maxima exists) given by \(w_{111}^{''}=0.5,\) \(w_{122}^{''}=0.454199,\) \(w_{133}^{''}=0.46353,\) \(w_{211}^{''}=-1,\) \(w_{222}^{''}=0,\) \(w_{233}^{''}=0,\) \(\mathfrak {u}_{21}^{''}=1,\) \(\mathfrak {u}_{22}^{''}=0,\) \(\mathfrak {u}_{23}^{''}=0,\) \(x_1=1,\) \(x_2=0\) and \(x_3=0.\) Maximum value less than 1 implies that the original maximization problem [Eq. (45)], where maximization is to be performed only over \(x_1,x_2,x_3\)(for arbitrary state parameters) under the above restrictions (resulting from unsteerability of \(\rho _{AB}^{(2)},\rho _{BC}^{(2)}\)), cannot render optimal value greater than 1. Consequently conditional state \(\rho _{AC}^{00}\) satisfies the unsteerability criterion [Eq. (23)] and is therefore unsteerable. So, in case Bob’s particles get projected along \(|\phi ^{+}\rangle ,\) genuine activation of steering does not occur in the linear network. In similar way, considering, other three conditional states, it is checked that the unsteerability criterion [Eq. (23)] is satisfied in each case. Genuine activation of steering is thus impossible for all possible outputs of Bob. Hence when one of the initial states has null local Bloch vector corresponding to first party, genuine activation of steering does not occur.

Appendix D

See Table 6.

Table 6 Bloch matrix parameters of each of the four conditional states generated in the linear swapping network using \(\Omega _3,\Omega _4\) [Eq. (24)] as initial states are specified here

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Paul, B. & Mandal, S. Revealing hidden steering nonlocality in a quantum network. Eur. Phys. J. D 76, 136 (2022). https://doi.org/10.1140/epjd/s10053-022-00469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00469-5

Navigation