Skip to main content
Log in

Designing externally controllable optical filters with two-dimensional magnetized plasma photonic crystals

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This study proposes a two-dimensional plasma photonic crystal structure to design a tunable optical filter by changing the plasma characteristics or applying an external magnetic field. The structure is composed of two-dimensional arrays of dielectric rods with a radius of b which is defected by a row of plasma rods with a radius of b/2 in the middle of the structure. The optical properties of the structure are simulated using the finite-difference time-domain (FDTD) method. The results indicate that with the rise in the electron density of the plasma rods and changes in the intensity and direction of the applied magnetic field, which is externally controllable, the appeared defect mode in the photonic bandgap, for a TE (Transverse Electric) polarized incident electromagnetic beam, can be easily modulated. This ability suggests that the proposed structure is a good candidate for designing externally tunable optical filters which have a lot of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request. The data that support the findings of this study are available on request from the author FB.]

References

  1. K. Jamshidi-Ghaleh, F. Karami-Garehgeshlagi, F. Bayat, Appl. Opt. 60, 11211 (2021)

    ADS  Google Scholar 

  2. Z. Ma, M. Wei, T. Pan, Opt. 234, 166573 (2021)

    Google Scholar 

  3. F. Righetti, B. Wang, M.A. Cappelli, Phys. Plasmas. 25, 124502 (2018)

    ADS  Google Scholar 

  4. Q. Li, K. Xie, D. Yuan, Z. Wei, L. Hu, Q. Mao, H. Jiang, Z. Hu, E. Wang, Appl. Opt. 55, 8541 (2016)

    ADS  Google Scholar 

  5. Y. Ma, H. Zhang, H. Zhang, T. Liu, W. Li, Appl. Opt 57, 8119 (2018)

    ADS  Google Scholar 

  6. H. Zhang, S. Liu, B. Li, Phys. Plasmas. 23, 012105 (2016)

    ADS  Google Scholar 

  7. G. Bin, Q. Xiao-Ming, Opt. 123, 1390–1392 (2012)

    Google Scholar 

  8. K. Jamshidi-Ghaleh, F. Karami-Garehgeshlagi, F. Bayat, Opt Quantum Electron (2020). https://doi.org/10.1007/s11082-020-02325-5

    Article  Google Scholar 

  9. T. Fu, Z. Yang, Z. Shi, F. Lan, D. Li, X. Gao, Phys. Plasmas. 20, 023109 (2013)

    ADS  Google Scholar 

  10. W. Fan, X. Zhang, L. Dong, Phys. Plasmas. 17, 113501 (2010)

    ADS  Google Scholar 

  11. M.M. Abadla, N.A. Tabaza, W. Tabaza, N.R. Ramanujam, K.S. Joseph Wilson, D. Vigneswaran, S.A. Taya, Opt. 185, 784–793 (2019)

    Google Scholar 

  12. H. Zhang, Y. Chen, Phys. Plasmas. 24, 042116 (2017)

    ADS  MathSciNet  Google Scholar 

  13. Y. Liang, Z. Liu, L. Lin, J. Peng, R. Liu, Q. Lin, Appl. Opt. 60, 2510–2516 (2021)

    ADS  Google Scholar 

  14. Y. Wen, S. Liu, H. Zhang, L. Wang, Appl. Opt. 51, 025108 (2017)

    Google Scholar 

  15. Q. Li, L. Hu, Q. Mao, H. Jiang, Z. Hu, K. Xie, Z. Wei, Opt. Commun. 410, 431–437 (2018)

    ADS  Google Scholar 

  16. S. Robinson, R. Nakkeeran, Opt. 123, 451–457 (2012)

    Google Scholar 

  17. S. Rezaee, M. Zavvari, H. Alipour-Banaei, Optik 126, 2535–2538 (2015)

    ADS  Google Scholar 

  18. S. Piltyay, J. Microwaves, Optoelectron. Electromagn. Appl. 20, 475–489 (2021)

    Google Scholar 

  19. T.-W. Chang, J.-R.C. Chien, C.-J. Wu, Appl. Opt. 55, 943–946 (2016)

    ADS  Google Scholar 

  20. J. Senior, L. Kazovsky, Phys. Today. 40, 128–128 (1987)

    Google Scholar 

  21. M.H. Clark, Isis 92, 427–428 (2001)

    Google Scholar 

  22. J. Xu, Y. Xu, W. Sun, M. Li, S. Xu, Sci Rep (2018). https://doi.org/10.1038/s41598-018-32345-x

    Article  Google Scholar 

  23. Y. Smirnov, E. Smolkin, V. Kurseeva, Appl. Anal. 98, 483–498 (2017)

    Google Scholar 

  24. J. Haoa, X. Xieb, K. Gua, Y. Liua, L. Xiaa, H. Yang, Curr. Appl. Phys. 20, 961 (2020)

    ADS  Google Scholar 

  25. H. Mehdian, Z. Mohammadzahery, A. Hasanbeigi, Phys. Plasmas. 21, 012101 (2014)

    ADS  Google Scholar 

  26. K. Jamshidi-Ghaleh, F. Karami-Garehgeshlagi, A.A. Mazloom, Phys. Plasmas. 22, 103507 (2015)

    ADS  Google Scholar 

  27. N. Askari, R. Mirzaie, E. Eslami, Phys. Plasmas. 22, 112117 (2015)

    ADS  Google Scholar 

  28. M. Lin, L. Fu, S. Ahmed, Q. Wang, Y. Zheng, Z. Liang, Z. Ouyang, Nanomaterials 11, 381 (2021)

    Google Scholar 

  29. G. Lehmann, K.H. Spatschek, Phys. Plasmas. 26, 013106 (2019)

    ADS  Google Scholar 

  30. X. Kong, S. Liu, H. Zhang, C. Li, Phys. Plasmas. 17, 103506 (2010)

    ADS  Google Scholar 

  31. S. Prasad, Y. Sharma, S. Shukla, V. Singh, Phys. Plasmas. 23, 032123 (2016)

    ADS  Google Scholar 

  32. W. Fan, L. Dong, Phys. Plasmas. 17, 073506 (2010)

    ADS  Google Scholar 

  33. L. Qi, Z. Yang, T. Fu, Phys. Plasmas. 19, 012509 (2012)

    ADS  Google Scholar 

  34. L. Qi, Z. Yang, F. Lan, X. Gao, Z. Shi, Phys. Plasmas. 17, 042501 (2010)

    ADS  Google Scholar 

  35. H. Zhang, S. Liu, X. Kong, Phys. Plasmas. 19, 122103 (2012)

    ADS  Google Scholar 

  36. S. Prasad, V. Singh, A.K. Singh, Prog. Electromagn. Res. 21, 211–222 (2011)

    Google Scholar 

  37. L. Qi, L. Shang, S. Zhang, Phys. Plasmas. 21, 013501 (2014)

    ADS  Google Scholar 

  38. M.L. Mitu, D. Toader, N. Banu, A. Scurtu, C.M. Ticoş, Appl. Phys. 114, 113305 (2013)

    Google Scholar 

  39. E. Yablonovitch, Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  Google Scholar 

  40. S. John, Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Google Scholar 

  41. L. Zhang, J.-T. Ouyang, Phys. Plasmas 21, 103514 (2014)

    ADS  Google Scholar 

  42. B. Wang, M.A. Cappelli, Appl. Phys. Lett. 108, 161101 (2016)

    ADS  Google Scholar 

  43. B. Wang, J.A. Rodríguez, M.A. Cappelli, Plasma Sour Sci. Technol. (2019). https://doi.org/10.1088/1361-6595/ab0011

    Article  Google Scholar 

  44. P.P. Sun, R. Zhang, W. Chen, P.V. Braun, J. Gary Eden, Appl. Phys. Rev. 6, 041406 (2019)

    ADS  Google Scholar 

  45. F.F. Chen, Introduction to plasma physics and controlled fusion, 3rd edn. (Plenum press, New York, 2016)

    Google Scholar 

  46. D.G. Swanson, Plasma waves, 2nd edn. (Taylor & Francis, New York, 2003)

    Google Scholar 

  47. Y. Wang, S. Chen, P. Wen, S. Liu, S. Zhong, Results Phys. 18, 103298 (2020)

    Google Scholar 

  48. B. Guo, Phys. Plasmas. 16, 043508 (2009)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Azarbaijan Shahid Madani University for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Programming and analysis were performed by FKG. The first draft of the manuscript was written by KJG and FB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farzaneh Bayat.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi-Ghaleh, K., Karami-Garehgeshlagi, F. & Bayat, F. Designing externally controllable optical filters with two-dimensional magnetized plasma photonic crystals. Eur. Phys. J. D 76, 147 (2022). https://doi.org/10.1140/epjd/s10053-022-00466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00466-8

Navigation