Skip to main content
Log in

Many-body localization of 1D disordered impenetrable two-component fermions

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study effects of disorder on eigenstates of 1D two-component fermions with infinitely strong Hubbard repulsion. We demonstrate that the spin-independent (potential) disorder reduces the problem to the one-particle Anderson localization taking place at arbitrarily weak disorder. In contrast, a random magnetic field can cause reentrant many-body localization–delocalization transitions. Surprisingly weak magnetic field destroys one-particle localization caused by not too strong potential disorder, whereas at much stronger fields the states are many-body localized. We present numerical support of these conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006). https://doi.org/10.1016/j.aop.2005.11.014

    Article  ADS  MATH  Google Scholar 

  2. V. Oganesyan, D.A. Huse, Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007). https://doi.org/10.1103/PhysRevB.75.155111

    Article  ADS  Google Scholar 

  3. T.C. Berkelbach, D.R. Reichman, Conductivity of disordered quantum lattice models at infinite temperature: many-body localization. Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.81.224429

  4. O.S. Barišić, J. Kokalj, I. Balog, P. Prelovšek, Dynamical conductivity and its fluctuations along the crossover to many-body localization. Phys. Rev. B 94, 045126 (2016). https://doi.org/10.1103/PhysRevB.94.045126

    Article  ADS  Google Scholar 

  5. Y. Bar Lev, G. Cohen, D.R. Reichman, Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. Phys. Rev. Lett. 114, 100601 (2015). https://doi.org/10.1103/PhysRevLett.114.100601

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Prelovšek, J. Herbrych, Self-consistent approach to many-body localization and subdiffusion. Phys. Rev. B 96, 035130 (2017). https://doi.org/10.1103/PhysRevB.96.035130

    Article  ADS  Google Scholar 

  7. A. Pal, D.A. Huse, Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010). https://doi.org/10.1103/PhysRevB.82.174411

    Article  ADS  Google Scholar 

  8. Y. Bar Lev, D.R. Reichman, Dynamics of many-body localization. Phys. Rev. B 89, 220201 (2014). https://doi.org/10.1103/PhysRevB.89.220201

    Article  ADS  Google Scholar 

  9. M. Serbyn, Z. Papić, D.A. Abanin, Criterion for many-body localization-delocalization phase transition. Phys. Rev. X 5, 041047 (2015). https://doi.org/10.1103/PhysRevX.5.041047

    Article  Google Scholar 

  10. D.J. Luitz, N. Laflorencie, F. Alet, Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93, 060201 (2016). https://doi.org/10.1103/PhysRevB.93.060201

    Article  ADS  Google Scholar 

  11. A.D. Luca, A. Scardicchio, Ergodicity breaking in a model showing many-body localization. EPL (Europhys. Lett.) 101(3), 37003 (2013). https://doi.org/10.1209/0295-5075/101/37003

  12. A. De Luca, B.L. Altshuler, V.E. Kravtsov, A. Scardicchio, Anderson localization on the Bethe lattice: nonergodicity of extended states. Phys. Rev. Lett. 113(2014). https://doi.org/10.1103/PhysRevLett.113.046806

  13. B. Bauer, C. Nayak, Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. Theory Exp. 2013(09), 09005 (2013). https://doi.org/10.1088/1742-5468/2013/09/p09005

  14. M. Serbyn, Z. Papić, D.A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett. 110, 260601 (2013). https://doi.org/10.1103/PhysRevLett.110.260601

  15. W. Buijsman, V. Gritsev, V. Cheianov, Gumbel statistics for entanglement spectra of many-body localized eigenstates. Phys. Rev. B 100, 205110 (2019). https://doi.org/10.1103/PhysRevB.100.205110

  16. M. Serbyn, A.A. Michailidis, D.A. Abanin, Z. Papić, Power-law entanglement spectrum in many-body localized phases. Phys. Rev. Lett. 117, 160601 (2016). https://doi.org/10.1103/PhysRevLett.117.160601

  17. M. Serbyn, Z. Papić, D.A. Abanin, Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013). https://doi.org/10.1103/PhysRevLett.111.127201

  18. L. Rademaker, M. Ortuño, Explicit local integrals of motion for the many-body localized state. Phys. Rev. Lett. 116, 010404 (2016). https://doi.org/10.1103/PhysRevLett.116.010404

  19. A. Chandran, I.H. Kim, G. Vidal, D.A. Abanin, Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B 91, 085425 (2015). https://doi.org/10.1103/PhysRevB.91.085425

  20. D.J. Luitz, Y.B. Lev, The ergodic side of the many-body localization transition. Annalean der Physik 529(7), 1600350 (2017). https://doi.org/10.1002/andp.201600350

  21. D.A. Abanin, Z. Papić, Recent progress in many-body localization. Annalen der Physik 529(7), 1700169 (2017). https://doi.org/10.1002/andp.201700169

  22. F. Alet, N. Laflorencie, Many-body localization: An introduction and selected topics. Comptes Rendus Physique 19(6), 498–525 (2018). https://doi.org/10.1016/j.crhy.2018.03.003

  23. D.J. Luitz, N. Laflorencie, F. Alet, Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015). https://doi.org/10.1103/PhysRevB.91.081103

  24. K. Kudo, T. Deguchi, Finite-size scaling with respect to interaction and disorder strength at the many-body localization transition. Phys. Rev. B 97, 220201 (2018). https://doi.org/10.1103/PhysRevB.97.220201

  25. D.J. Luitz, Long tail distributions near the many-body localization transition. Phys. Rev. B 93, 134201 (2016). https://doi.org/10.1103/PhysRevB.93.134201

  26. A.L. Burin, Localization in a random XY model with long-range interactions: intermediate case between single-particle and many-body problems. Phys. Rev. B (2015). https://doi.org/10.1103/PhysRevB.92.104428

  27. R. Mondaini, M. Rigol, Many-body localization and thermalization in disordered hubbard chains. Phys. Rev. A 92, 041601 (2015). https://doi.org/10.1103/PhysRevA.92.041601

    Article  ADS  Google Scholar 

  28. J. Zakrzewski, D. Delande, Spin-charge separation and many-body localization. Phys. Rev. B 98, 014203 (2018). https://doi.org/10.1103/PhysRevB.98.014203

    Article  ADS  Google Scholar 

  29. J. Bonča, M. Mierzejewski, Delocalized carriers in the \(t{-}J\) model with strong charge disorder. Phys. Rev. B 95, 214201 (2017). https://doi.org/10.1103/PhysRevB.95.214201

    Article  ADS  Google Scholar 

  30. G. Lemut, M. Mierzejewski, J. Bonča, Complete many-body localization in the \(t{-}J\) model caused by a random magnetic field. Phys. Rev. Lett. 119, 246601 (2017). https://doi.org/10.1103/PhysRevLett.119.246601

    Article  ADS  Google Scholar 

  31. I.V. Protopopov, D.A. Abanin, Spin-mediated particle transport in the disordered Hubbard model. Phys. Rev. B 99, 115111 (2019). https://doi.org/10.1103/PhysRevB.99.115111

    Article  ADS  Google Scholar 

  32. P. Prelovšek, O.S. Barišić, M. Žnidarič, Absence of full many-body localization in the disordered Hubbard chain. Phys. Rev. B 94, 241104 (2016). https://doi.org/10.1103/PhysRevB.94.241104

    Article  ADS  Google Scholar 

  33. I.V. Protopopov, W.W. Ho, D.A. Abanin, Effect of SU(2) symmetry on many-body localization and thermalization. Phys. Rev. B 96, 041122 (2017). https://doi.org/10.1103/PhysRevB.96.041122

    Article  ADS  Google Scholar 

  34. M. Środa, P. Prelovšek, M. Mierzejewski, Instability of subdiffusive spin dynamics in strongly disordered Hubbard chain. Phys. Rev. B 99, 121110 (2019). https://doi.org/10.1103/PhysRevB.99.121110

    Article  ADS  Google Scholar 

  35. B. Leipner-Johns, R. Wortis, Charge- and spin-specific local integrals of motion in a disordered Hubbard model. Phys. Rev. B 100, 125132 (2019). https://doi.org/10.1103/PhysRevB.100.125132

    Article  ADS  Google Scholar 

  36. N.I. Abarenkova, A.G. Izergin, A.G. Pronko, Correlators of densities in the one-dimensional Hubbard model. Zapiski Nauchnykh Seminarov POMI 249, 7–19 (1997)

    MATH  Google Scholar 

  37. M. Kozarzewski, P. Prelovšek, M. Mierzejewski, Spin subdiffusion in the disordered Hubbard chain. Phys. Rev. Lett. 120, 246602 (2018). https://doi.org/10.1103/PhysRevLett.120.246602

    Article  ADS  Google Scholar 

  38. M. Kozarzewski, M. Mierzejewski, P. Prelovšek, Suppressed energy transport in the strongly disordered Hubbard chain. Phys. Rev. B 99, 241113 (2019). https://doi.org/10.1103/PhysRevB.99.241113

    Article  ADS  Google Scholar 

  39. U. Krause, T. Pellegrin, P.W. Brouwer, D.A. Abanin, M. Filippone, Nucleation of ergodicity by a single mobile impurity in supercooled insulators. Phys. Rev. Lett. 126, 030603 (2021). https://doi.org/10.1103/PhysRevLett.126.030603

    Article  ADS  Google Scholar 

  40. D. Kurlov, M. Bahovadinov, S. Matveenko, A. Fedorov, V. Gritsev, B. Altshuler, G. Shlyapnikov, Disordered impenetrable two-component fermions in one dimension. arXiv preprint arXiv:2112.06895 (2021)

  41. F.H. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, The One-dimensional Hubbard Model (Cambridge University Press, 2005)

  42. F. Evers, A.D. Mirlin, Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008). https://doi.org/10.1103/RevModPhys.80.1355

    Article  ADS  Google Scholar 

  43. S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

  44. I.M. Khaymovich, V.E. Kravtsov, B.L. Altshuler, L.B. Ioffe, Fragile extended phases in the log-normal Rosenzweig-Porter model. Phys. Rev. Res. 2(2020). https://doi.org/10.1103/PhysRevResearch.2.043346

  45. M. Pino, J. Tabanera, P. Serna, From ergodic to non-ergodic chaos in Rosenzweig-Porter model. J. Phys. A: Math. Theor. 52(47), 475101 (2019). https://doi.org/10.1088/1751-8121/ab4b76

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Pino, V.E. Kravtsov, B.L. Altshuler, L.B. Ioffe, Multifractal metal in a disordered Josephson junctions array. Phys. Rev. B 96, 214205 (2017). https://doi.org/10.1103/PhysRevB.96.214205

    Article  ADS  Google Scholar 

  47. A. Aspect, M. Inguscio, Anderson localization of ultracold atoms. Phys. Today 62(8), 30–35 (2009). https://doi.org/10.1063/1.3206092

  48. J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Exploring the many-body localization transition in two dimensions. Science 352(6293), 1547–1552 (2016). https://doi.org/10.1126/science.aaf8834

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang, W. Ren, H. Dong, D. Zheng, Y.-R. Zhang, R. Mondaini, H. Fan, H. Wang, Observation of energy-resolved many-body Localization. Nature Phys. 17(2), 234–239 (2021). https://doi.org/10.1038/s41567-020-1035-1

  50. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z.J. Yao, P. Yeh, A. Zalcman, H. Neven, J.M. Martinis, Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-1666-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V.E. Kravtsov, V. Gritsev, O. Gamayun, and V. Smelyanskiy for useful discussions. This research was supported in part through computational resources of HPC facilities at NRU HSE and by the Russian Science Foundation Grant No. 20-42-05002. We also acknowledge support of this work by Rosatom.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Georgy V. Shlyapnikov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahovadinov, M.S., Kurlov, D.V., Altshuler, B.L. et al. Many-body localization of 1D disordered impenetrable two-component fermions. Eur. Phys. J. D 76, 116 (2022). https://doi.org/10.1140/epjd/s10053-022-00440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00440-4

Navigation