Skip to main content
Log in

The Behavior of Many-Body Localization of Quasi-Disordered Spin-1/2 Chains

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically study properties of the many-body localization (MBL) in the quasi-disordered one-dimensional spin-1/2 chains at finite temperature. We extend the problem of individual localization of disordered systems to quasi-disordered many-body interaction systems, introducing disorder with a more controllable method to show the uniqueness of quasi-disordered designs. In this paper, the interplay among interaction and quasi-disordered fields is investigated comprehensively by using the exact matrix diagonalization. It is demonstrated that the fidelity of eigenstate is able to characterize the many-body localization transition in closed spin system (Gu, Int. J. Mod. Phys. B 24, 4371–4458, 2010). We compute the fidelity for high-energy many-body eigenstates, which shows the phase transition of one-dimensional spin-1/2 chains. Our results reveal that the quasi-disordered can cause the occurrence of a transition from the ergodic phase to the localized phase, which agrees with Lee’s recent studies (Lee et al., Phys. Rev. B 96, 075146, 2017). Besides, we plot the averaged fidelity as a function of the disorder strength h for system sizes from 8 to 14 with five different coupling coefficient ratios. It also shows that the interplay between disorder and interaction constitutes the driving mechanism of the MBL transition. The more complex the interaction between the two particles, the more difficult it is to lead to many-body delocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371–4458 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lee, M., Look, T.R., Sheng, D.N., Lim, S.P.: Many-body localization in spin chain systems with quasiperiodic fields. Phys. Rev. B 96, 075146 (2017)

    Article  ADS  Google Scholar 

  3. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  4. Billy, J., et al.: Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008)

    Article  ADS  Google Scholar 

  5. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 18 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Roati, G., et al.: Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–898 (2008)

    Article  ADS  Google Scholar 

  7. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Fleishman, L., Anderson, P.W.: Interactions and the Anderson transition. Phys. Rev. B 21, 2366 (1980)

    Article  ADS  Google Scholar 

  9. Altshuler, B.L., Gefen, Y., Kamenev, A., Levitov, L.S.: Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803 (1997)

    Article  ADS  Google Scholar 

  10. Gornyi, I.V., Mirlin, A.D., Polyakov, D.G.: Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005)

    Article  ADS  Google Scholar 

  11. žnidari č, M., Prosen, T., Prelovšek, P.: Many-body localization in the heisenberg x x z magnet in a random field. Phys. Rev. B 77, 064426 (2008)

    Article  ADS  Google Scholar 

  12. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  13. Oganesyan, V., Huse, D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  14. Khatami, E., Rigol, M., Relano, A., García-García, A.M.: Quantum quenches in disordered systems: approach to thermal equilibrium without a typical relaxation time. Phys. Rev. E. 85, 050102 (2012)

    Article  ADS  Google Scholar 

  15. Bardarson, J.H., Pollmann, F., Moore, J.E.: Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012)

    Article  ADS  Google Scholar 

  16. Vosk, R., Altman, E.: Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 110, 067204 (2013)

    Article  ADS  Google Scholar 

  17. Kondov, S., McGehee, W., Xu, W., DeMarco, B.: Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015)

    Article  ADS  Google Scholar 

  18. Schreiber, M., et al.: Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Canovi, E., Rossini, D., Fazio, R., Santoro, G.E., Silva, A.: Quantum quenches, thermalization, and many-body localization. Phys. Rev. B 83, 094431 (2011)

    Article  ADS  Google Scholar 

  20. Smith, J., et al.: Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016)

    Article  Google Scholar 

  21. Choi, J., et al.: Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bordia, P., Lüschen, H.P., Hodgman, S.S., Schreiber, M., Bloch, I., Schneider, U.: Coupling identical one-dimensional many-body localized systems. Phys. Rev. Lett. 116, 140401 (2016)

    Article  ADS  Google Scholar 

  23. Potter, A.C., Vasseur, R., Parameswaran, S.A.: Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033 (2015)

    Google Scholar 

  24. Vosk, R., Huse, D.A., Altman, E.: Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032 (2015)

    Google Scholar 

  25. Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015)

    Article  ADS  Google Scholar 

  26. Deutsch, J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A43, 2046 (1991)

    Article  ADS  Google Scholar 

  27. Srednicki, M.: Chaos and quantum thermalization. Phys. Rev. E. 50, 888 (1994)

    Article  ADS  Google Scholar 

  28. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2015)

    Article  ADS  Google Scholar 

  29. Bauer, B., Nayak, C.: Area laws in a many-body localized state and its implications for topological order. Journal of Statistical Mechanics: Theory and Experiment 2013, P09005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014)

    Article  ADS  Google Scholar 

  31. Serbyn, M., Papić, Z., Abanin, D.A.: Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013)

    Article  ADS  Google Scholar 

  32. Huse, D.A., Nandkishore, R., Oganesyan, V., Pal, A., Sondhi, S.L.: Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013)

    Article  ADS  Google Scholar 

  33. Potter, A.C., Vishwanath, A.: Protection of topological order by symmetry and many-body localization. arXiv:1506.00592. 1506, 00592 (2015)

  34. Slagle, K., Bi, Z., You, Y.-Z., Xu, C.: Many-body localization of symmetry protected topological states. arXiv:1505.05147. 1505, 05147 (2015)

  35. Berkelbach, T.C., Reichman, D.R.: Conductivity of disordered quantum lattice models at infinite temperature: many-body localization. Phys. Rev. B 81, 224429 (2010)

    Article  ADS  Google Scholar 

  36. Aramthottil, A.S., Chanda, T., Sierant, P., Zakrzewski, J.: Finite-size scaling analysis of the many-body localization transition in quasiperiodic spin chains. Phys. Rev. B 104, 214201 (2021)

    Article  ADS  Google Scholar 

  37. Michal, V.P., Altshuler, B.L., Shlyapnikov, G.V.: Delocalization of weakly interacting bosons in a 1D quasiperiodic potential. Phys. Rev. Lett. 113, 045304 (2014)

    Article  ADS  Google Scholar 

  38. Lüschen, H.P., et al.: Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems. Phys. Rev. Lett. 119, 260401 (2017)

    Article  ADS  Google Scholar 

  39. Bordia, P., et al.: Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems. Phys. Rev. X 7, 041047 (2017)

    Google Scholar 

  40. Rams, M.M., Damski, B.: Quantum fidelity in the thermodynamic limit. Phys. Rev. Lett. 106, 055701 (2011)

    Article  ADS  Google Scholar 

  41. Albuquerque, A.F., Alet, F., Sire, C., Capponi, S.: Quantum critical scaling of fidelity susceptibility. Phys. Rev. B 81, 064418 (2010)

    Article  ADS  Google Scholar 

  42. Hu, T., Xue, K., Li, X., Zhang, Y., Ren, H.: Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain. Sci. Rep. 7, 1–8 (2017)

    Google Scholar 

  43. Hu, T.T., Xue, K., Li, X.D., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization transition. Phys. Rev. E. 94, 052119 (2016)

    Article  ADS  Google Scholar 

  44. Zanardi, P., Paunkovic, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E. 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. Chen, S., Wang, L., Gu, S.-J., Wang, Y.: Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction. Phys. Rev. E. 76, 061108 (2007)

    Article  ADS  Google Scholar 

  46. Xiong, H.-N., Ma, J., Wang, Y., Wang, X.: Reduced fidelity and quantum phase transitions in spin-1/2 frustrated Heisenberg chains. J. Phys. A Math. Theor. 42, 065304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Shihan, S., Thomas, J.: Observing quantum coherence from photons scattered in free-space. Light: Science & Applications 10, 121 (2021)

    Article  ADS  Google Scholar 

  48. Li, C., Wei, L., Huiqiong, W., Jinchai, L., Junyong, K.: Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light: Science & Applications 9, 104 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (Grant No. 62175233).

Funding

This work was supported by the NSF of China (Grant No. 62175233).

Author information

Authors and Affiliations

Authors

Contributions

Taotao H, Jiali Zhang contributed the idea. Taotao Hu, Jiali Zhang, Shuangyuan Ni performed the calculations and prepared the figures. Jiali Zhang wrote the main manuscript. Taotao Hu, Kang Xue, Xiaodan Li, Shuang Lu, Xiaoxuan Gu and Hang Ren checked the calculations and improved the manuscript. All authors contributed to discussions and reviewed the manuscript.

Corresponding author

Correspondence to Taotao Hu.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no competing interests.

Additional information

Availability of data and material

We guarantee that all data and materials support our published claims and comply with field standards.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, T., Ren, H. et al. The Behavior of Many-Body Localization of Quasi-Disordered Spin-1/2 Chains. Int J Theor Phys 61, 122 (2022). https://doi.org/10.1007/s10773-022-05108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05108-8

Keywords

Navigation