Skip to main content
Log in

Momentum-space properties for the S-states of the valence electron of potassium atom

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Momentum-space properties of the valence electron of potassium atom are studied for 4S ground and Rydberg S-states with principal quantum number \(n=5 \,\mathrm{and}\, 6,\) using an analytical momentum space wave function in quantum-defect theory. Ground state results are compared with Hartree–Fock–Roothaan and hydrogenic theory. Rydberg state results are compared with hydrogenic theory. It is found that ground state results are in good agreement with Hartree–Fock–Roothaan values showing a small difference. This deviation is primarily due to electron correlation which is included in quantum-defect theory. In Rydberg states, deviation between the results of quantum-defect theory and hydrogenic theory reduces too much with the increase in principal quantum number than ground state primarily due to unimportant effect of electron correlation in Rydberg states. Rydberg state results indicate a trend to the similarity with hydrogen atom.

Graphical abstract

Comparison of Compton profiles for the ground state of the valence electron of potassium atom is shown using quantum-defect theory (QDT), Hartree–Fock (HF) and hydrogenic (H) theory.

Comparison of Compton profiles for Rydberg S-states with principal quantum number η = 5 & 6 of the valence electron of potassium atom are shown using quantum-defect theory(QDT), Hartree-Fock( HF) and hydrogenic(H) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: As it is a theoretical calculation-based work hence no data is generated.]

References

  1. A.J. Thakkar, Adv. Chem. Phys. 128, 303 (2004)

    Google Scholar 

  2. M.J. Cooper, Radiat. Phys. Chem. 50, 63 (1997)

    Article  ADS  Google Scholar 

  3. S. Huotari, Electron Structure of Matter Studied by Compton Scattering (University of Helsinki, Helsinki, 2002)

    Google Scholar 

  4. R. Vijayakummar, Shivaramu, N. Ramamurthy, M.J. Ford, Physica B 403, 4309 (2008)

  5. M. Cooper, P. Mijnarends, N. Shiotani, N. Sakai, A. Bansil, X-Ray Compton Scattering (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  6. Y. Sakurai, M. Itou, B. Barbiellini, P. Mijnarends, R. Markiewiez et al., Science 332, 698 (2011)

    Article  ADS  Google Scholar 

  7. B. Barbiellini, C. Bellin, G. Loupias, T. Buslaps, A. Shukla, Phys. Rev. B 79, 155115 (2009)

    Article  ADS  Google Scholar 

  8. J.T. Okada, P.H.-L. Sit, Y. Watanabe, Y.J. Wang, B. Barbiellini et al., Phys. Rev. Lett. 108, 067402 (2012)

    Article  ADS  Google Scholar 

  9. G.F. Chew, G.C. Wick, Phys. Rev. 85, 636 (1952)

    Article  ADS  Google Scholar 

  10. R. Currat, P.D. DeCicco, R.J. Weiss, Phys. Rev. B 4, 4256 (1971)

    Article  ADS  Google Scholar 

  11. A. Sommerfeld, Atomic Structure and Spectra Lines (Methuen and Co., London, 1934)

    Google Scholar 

  12. H. Friedrich, Theoretical Atomic Physics (Springer-Verlag, New York, 1991)

    Book  Google Scholar 

  13. F.S. Ham, in Solid State Physics-Advances in Research and Applications ed. by F. Seitz, D. Turnbull (Academic, New York, 1955) 1, 127

  14. M.J. Seaton, Mon. Not. R. Astron. Soc. A 118, 504 (1958)

    Article  ADS  Google Scholar 

  15. U. Fano, Phys. Rev. A 2, 353 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  16. C.M. Lee, T.K. Lu, Phys. Rev. A 8, 1241 (1973)

    Article  ADS  Google Scholar 

  17. C.M. Lee, Phys. Rev. A 10, 584 (1974)

    Article  ADS  Google Scholar 

  18. M.J. Seaton, J. Phys. B 11, 4067 (1978)

    Article  ADS  Google Scholar 

  19. Duban in Electron and Photon Interactions with Atoms ed. by H. Klempoppen, M. R. C McDowell (Plenum, New York, 1976)

  20. C.M. Lee, Phys. Rev. A 16, 109 (1977)

    Article  ADS  Google Scholar 

  21. D.H. Binh, H.V. Regemorter, J. Phys. B: At. Mol. Opt. Phys. 30, 2403 (1997)

    Article  ADS  Google Scholar 

  22. P. Chaudhuri, B. Talukdar, S.K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 32, 95 (1999)

    Article  ADS  Google Scholar 

  23. A. Sarkar, G.C. Maity, Braz. J. Phys. 52, 92 (2022)

    Article  ADS  Google Scholar 

  24. U. Fano, Phys. Rev. A 17, 93 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  25. F.H. Mies, Phys. Rev. A 20, 1779 (1979)

    Article  ADS  Google Scholar 

  26. S.A. Edelstein, T.F. Gallagher, Adv. Atomic Mole. Phys. 14, 365 (1979)

    Article  ADS  Google Scholar 

  27. B. Talukdar, A. Sarkar, S.N. Roy, P. Sarkar, Chem. Phys. Lett. 381, 67 (2003)

    Article  ADS  Google Scholar 

  28. D.R. Bates, A. Damgaard, Philos. Trans. R. Soc. A 242, 101 (1949)

    ADS  Google Scholar 

  29. M. Matsuzawa, J. Phys. B 12, 3743 (1979)

    Article  ADS  Google Scholar 

  30. C.C.J. Roothaan, A.W. Weiss, Rev. Mod. Phys. 32, 194 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 478 (1974)

    Article  Google Scholar 

  32. Y.L. Luke, Mathematical Functions and Their Approximations (Academic Press, New York, 1975)

    MATH  Google Scholar 

  33. B. Pldolsky, L. Pauling, Phys. Rev. 34, 109 (1929)

    Article  ADS  Google Scholar 

  34. G.L. Snitchler, D.K. Watson, J. Phys. B: At. Mol. Opt. Phys. 19, 259 (1986)

    Article  ADS  Google Scholar 

  35. L. Mendelsohn, V.H. Smith in Compton scattering ed. by B.Williams (McGraw-Hill, New York, 1977)

  36. F. Biggs, L.B. Mendelsohn, J.B. Mann, At. Data Nucl. Data Tables 16, 201 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A. Momentum-space properties for the S-states of the valence electron of potassium atom. Eur. Phys. J. D 76, 118 (2022). https://doi.org/10.1140/epjd/s10053-022-00428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00428-0

Navigation