Skip to main content
Log in

Electron impact partial ionization cross sections of 1-butanol

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The 1-butanol molecule is one of the most promising sources of biofuel, having the potential to replace fossil fuels. It can be used in combustion engines as fuel. During the combustion, plasma is created in which the electron interactions with neutral targets result in the formation of cations via dissociative ionization process. The energy-dependent cross sections are reported for different cations up to 5 keV in a very simple and efficient way within the framework of the binary-encounter model. The computation approach requires the binary-encounter-Bethe input parameters, ion energetics, and electron ionization mass spectrometry data. A good agreement is observed between the computed cross sections and experimental measurements for various cations. The work emphasizes the role of electron mass spectrometry in the study of the ionization process. The electron collision data would be useful to model the combustion process to develop efficient combustion engines. The present work provides the only available theoretical results for 1-butanol over an extensive energy range.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material.

References

  1. N. Gaurav, S. Sivasankari, G.S. Kiran, A. Ninawe, J. Selvin, Renew. Sustain. Energy Rev. 73, 205 (2017)

    Article  Google Scholar 

  2. S. Nanda, P.K. Sarangi, D.-V.N. Vo, Fuel Processing and Energy Utilization (CRC Press, 2019)

  3. S. Nawab, N. Wang, X. Ma, Y.-X. Huo, Microb. Cell Fact. 19, 79 (2020)

    Article  Google Scholar 

  4. W.R. da Silva Trindade, R.G. dos Santos, Renew. Sustain. Energy Rev. 69, 642 (2017)

    Article  Google Scholar 

  5. A. Atmanli, E. Ileri, B. Yuksel, Energy Convers. Manag. 81, 312 (2014)

    Article  Google Scholar 

  6. J. Han, W. He, L.M.T. Somers, Front Mech. Eng. 6, 26 (2020)

    Article  Google Scholar 

  7. M. Lapuerta, J.J. Hernandez, J. Rodrıguez-Fernandez, J. Barba, A. Ramos, D. Fernandez-Rodrıguez, Int. J Engine Res. 19(10), 1099 (2018)

    Article  Google Scholar 

  8. L. Tipanluisa, N. Fonseca, J. Casanova, J.-M. Loṕez, Fuel 302, 121204 (2021)

    Article  Google Scholar 

  9. S.M. Sarathy, M.J. Thomson, C. Togbé, P. Dagaut, F. Halter, C. Mounaim-Rousselle, Combus. Flame 156, 852 (2009)

    Article  Google Scholar 

  10. R.P. Kumar, E. Gnansounou, J.K. Raman, G. Baskar (eds.), Refining Biomass Residues for Sustainable Energy and Bioproducts (Academic Press, 2020)

  11. Y. Ni, Z. Sun, Appl. Microbiol. Biotechnol. 83, 415 (2009)

    Article  Google Scholar 

  12. J. Čedík, M. Pexa, B. Peterka, M. Müller, M. Holubek, S. Hloch, M. Kucera, Oil Gas Sci Technol. Rev. IFP Energies Nouvelles 76, 17 (2021)

    Article  Google Scholar 

  13. S. Atsumi, T. Hanai, J.C. Liao, Nature 451, 86 (2008)

    Article  ADS  Google Scholar 

  14. M. Mascal, Biofuel Bioprod Biorefin. 6, a483 (2012)

    Article  Google Scholar 

  15. S.T. Arnold, A.A. Viggiano, R.A. Morris, J. Phys. Chem. A 102, 8881 (1998)

    Article  Google Scholar 

  16. R.A. Morris, S.T. Arnold, A.A. Viggiano, L.Q. Maurice, C. Carter, E.A. Sutton, Proc. AIAA 2nd Workshop on Weakly Ionized Gases (Norfolk, VA,) (1998)

  17. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1989)

    Google Scholar 

  18. A. Starikovskiy, Philos. Trans. R. Soc. A 373, 20150074 (2015)

  19. M.C.A. Lopes, W.A.D. Pires, K.L. Nixon, R.A.A. Amorim et al., Eur. Phys. J. D 74, 88 (2020)

    Article  ADS  Google Scholar 

  20. M.J. Brunger, Int. Rev. Phys. Chem. 36(2), 333 (2017)

    Article  Google Scholar 

  21. S.M. Sarathy, S. Vranckx, K. Yasunaga et al., Combust. Flame 159, 2028 (2012)

    Article  Google Scholar 

  22. P. Oßwald, H. Guldenberg, K. Kohse-Hoinghaus, B. Yang, T. Yuan, F. Qi, Combust. Flame 158, 2 (2011)

    Article  Google Scholar 

  23. S.M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 44, 40 (2014)

    Article  Google Scholar 

  24. I. Andersson, L. Eriksson, J. Dyn. Syst. Meas. Control 131 (2009)

  25. A. Starikovskiy, N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013)

    Article  Google Scholar 

  26. I.V. Adamovich, W.R. Lempert, Plasma Phys. Control. Fusion 57, 014001 (2015)

    Article  ADS  Google Scholar 

  27. L. Cheng, N. Barleon, B. Cuenot, O. Vermorel, A. Bourdon, Combust. Flame 240, 111990 (2022)

    Article  Google Scholar 

  28. A.C. DeFilippo, J.-Y. Chen, Combust. Flame 172, 38 (2016)

    Article  Google Scholar 

  29. S. Yang, S. Nagaraja, W. Sun, V. Yang, J. Phys. D: Appl. Phys. 50, 433001 (2017)

    Article  ADS  Google Scholar 

  30. Y. Ju, W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015)

    Article  Google Scholar 

  31. Y. Ju, J.K. Lefkowitz, C.B. Reuter et al., Plasma Chem. Plasma Process. 36, 85 (2016)

    Article  Google Scholar 

  32. G.J.M. Hagelaar, L.C. Pitchford, Plasma Sour. Sci. Technol. 14, 722 (2005)

    Article  ADS  Google Scholar 

  33. S. Mohr, M. Tudorovskaya, M. Hanicinec, J. Tennyson, Atoms 9, 85 (2021)

    Article  ADS  Google Scholar 

  34. COMSOL Inc. (2020) https://www.comsol.com/plasma-module

  35. P.K. Chu, X. Lu (eds.), Low Temperature Plasma Technology: Methods and Applications (CRC Press, 2014)

  36. R.E.H. Clark, D.H. Reiter (eds.), Nuclear Fusion Research: Understanding Plasma-Surface Interactions (Springer, Berlin, 2005)

    Google Scholar 

  37. T.D. MPark, G.H. Dunn (eds.), Electron Impact Ionization (Springer, 1985)

  38. T. Makabe, Z. Lj, Petrović, Plasma Electronics: Applications in Microelectronic Device Fabrication, 2nd edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  39. R.K. Janev (ed.), Atomic and Molecular Processes in Fusion Edge Plasmas (Springer, Boston, 1995)

    Google Scholar 

  40. P. Oßwald, M. Kohler, Rev. Sci. Instrum. 86, 105109 (2015)

    Article  ADS  Google Scholar 

  41. A. Lucassen, N. Labbe, P.R. Westmoreland, K. Kohse-Höinghaus, Combust. Flame 158, 1647 (2011)

    Article  Google Scholar 

  42. N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 35, 168 (2009)

    Article  Google Scholar 

  43. B. Chen, H. Wang, Z. Wang, J. Han, A.B.S. Alquaity, H. Wang, N. Hansen, S.M. Sarathy, Combust. Flame 202, 208 (2019)

    Article  Google Scholar 

  44. S.E. Huber, A. Mauracher, D. Süß, I. Sukuba et al., J. Chem. Phys. 150, 024306 (2019)

    Article  ADS  Google Scholar 

  45. M.C. Fuss, A.G. Sanz, A. Munoz, F. Blanco, M.J. Brunger, S.J. Buckman, P. Limao-Vieira, G. García, Appl. Radiat. Isotopes 83, 159 (2014)

    Article  Google Scholar 

  46. M.U. Bug, W.Y. Baek, H. Rabus, C. Villagrasa, S. Meylan, A.B. Rosenfeld, Radiat. Phys. Chem. 130, 450 (2017)

    Article  ADS  Google Scholar 

  47. L. Campbell, M.J. Brunger, Plasma Sour. Sci. Technol. 22, 013002 (2013)

    Article  ADS  Google Scholar 

  48. M.J. Brunger, Int. Rev. Phys. Chem. 35(2), 297 (2016)

    Article  Google Scholar 

  49. I. El Naqa, P. Pater, J. Seuntjens, Phys. Med. Biol. 57, R75 (2012)

    Article  Google Scholar 

  50. L.C. Pitchford, L.L. Alves, K. Bartschat et al., Plasma Process. Polym. 14, 1600098 (2017)

    Article  Google Scholar 

  51. M.A. Ridenti, J.A. Filho, M.J. Brunger, R.F. da Costa et al., Eur. Phys. J. D 70, 16 (2016)

    Article  Google Scholar 

  52. W.M. Huo, Y.-K. Kim, I.E.E.E. Trans, I.E.E.E. Trans, Plasma Sci. 27(5), 1225 (1999) )

  53. J.S. Yoon, M.-Y. Song, H. Kato et al., J. Phys. Chem. Ref. Data 39, 033106 (2010)

  54. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 251 (2019)

    Article  ADS  Google Scholar 

  55. S. Ghosh, K.L. Nixon, W.A.D. Pires, R.A.A. Amorim et al., Int. J. Mass. Spectrom. 430, 44 (2018)

    Article  Google Scholar 

  56. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.A.A. Amorim et al., Int. J. Mass. Spectrom. 430, 158 (2018)

  57. A.N. Zavilopulo, F.F. Chipev, L.M. Kokhtych, Nucl. Instrum. Methods Phys. Res. B 233, 302 (2005)

  58. A.S. Kadyrov, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 49, 222002 (2016)

    Article  ADS  Google Scholar 

  59. I. Bray, D.V. Fursa, A.S. Kheifets, A.T. Stelbovics, J. Phys. B: At. Mol. Opt. Phys. 35, R117 (2002)

    Article  ADS  Google Scholar 

  60. I. Bray, D.V. Fursa, A.S. Kadyrov, A.T. Stelbovics, A.S. Kheifets, A.M. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)

    Article  ADS  Google Scholar 

  61. P.K. Biswas, J.S.E. Germano, T. Frederico, J. Phys. B: At. Mol. Opt. Phys. 35, L409 (2002)

    Article  ADS  Google Scholar 

  62. M.C. Zammit, D.V. Fursa, J.S. Savage, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 50, 123001 (2017)

    Article  ADS  Google Scholar 

  63. N.A. Mori, R. Utamuratov, L.H. Scarlett, D.V. Fursa, A.S. Kadyrov, I. Bray, M.C. Zammit, J. Phys. B: At. Mol. Opt. Phys. 53, 105203 (2020)

    ADS  Google Scholar 

  64. I. Bray, I.B. Abdurakhmanov, J.J. Bailey et al., J. Phys. B: At. Mol. Opt. Phys. 50, 202001 (2017)

    Article  ADS  Google Scholar 

  65. J.R. Hamilton, J. Tennyson, S. Huang, M.J. Kushner, Plasma Sour. Sci. Technol. 26, 065010 (2017)

    Article  ADS  Google Scholar 

  66. A. Bharadvaja, M. Bassi, A.K. Arora, K.L. Baluja, Plasma Sour. Sci. Technol. 30, 095012 (2021)

    Article  ADS  Google Scholar 

  67. K. Goswami, A.K. Arora, A. Bharadvaja, K.L. Baluja, Eur. Phys. J. D 75, 228 (2021)

    Article  ADS  Google Scholar 

  68. A.K. Arora, K.K. Gupta, K. Goswami, A. Bharadvaja, K.L. Baluja, Plasma Sour. Sci. Technol. 31, 015008 (2022)

    Article  ADS  Google Scholar 

  69. Y. Kumar, M. Kumar, Chem. Phys. Lett. 740, 137071 (2020)

    Article  Google Scholar 

  70. Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  71. J.P. Santos, F. Parente, Y.-K. Kim, J. Phys. B 36(21), 4211 (2003)

    Article  ADS  Google Scholar 

  72. GAUSSIAN 03 (Gaussian, Inc., Wallingford, CT. 2003)

  73. https://webbook.nist.gov/chemistry/

  74. R.A. Friedel, J.L. Shultz, A.G. Sharkey, Anal. Chem. 28, 926 (1956)

    Article  Google Scholar 

  75. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.F.C. Neves et al., Int. J. Mass Spectrom. 422, 32 (2017)

    Article  Google Scholar 

  76. K.L. Nixon, W.A. Pires et al., Int. J. Mass Spectrom. 404, 48 (2016)

    Article  Google Scholar 

  77. R. Basner, M. Schmidt, K. Becker, Int. J. Mass Spectrom. 233, 25 (2004)

    Article  Google Scholar 

  78. K.K. Irikura, J. Chem. Phys. 145, 224102 (2016)

    Article  ADS  Google Scholar 

  79. K.K. Irikura, Y.-K. Kim, M.A. Ali, J. Res. Natl. Inst. Stand. Technol. 107, 63 (2002)

    Article  Google Scholar 

  80. K. Fedus, G.P. Karwasz, Eur. Phys. J. D 71, 138 (2017)

    Article  ADS  Google Scholar 

  81. J.E. Hudson, M.L. Hamilton, C. Vallance, P.W. Harland, Phys. Chem. Chem. Phys. 5, 3162 (2003)

    Article  Google Scholar 

  82. J.N. Bull, P.W. Harland, C. Vallance, J. Phys. Chem. A 116, 767 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally involved in the present work.

Corresponding author

Correspondence to Anand Bharadvaja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have influenced the work reported in this paper.

Data Statement

The cross section data of all cations obtained from m-BEB method are provided in the supplementary data sheet.

Additional information

Kasturi Lal Baluja: Formerly at Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India.

Ajay Kumar Arora is on leave from his parent institution Keshav Mahavidyalaya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (xlsx 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, K., Luthra, M., Arora, A.K. et al. Electron impact partial ionization cross sections of 1-butanol. Eur. Phys. J. D 76, 97 (2022). https://doi.org/10.1140/epjd/s10053-022-00425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00425-3

Navigation