Skip to main content
Log in

The plasma nanosphere cooling rate simulation in the presence of the coherent electromagnetic waves with Gaussian profile

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Using cold atmospheric plasma (CAP) could promise a breakthrough in the fight against cancer cells, providing an alternative to surgical and chemical therapies. Here, the reduction rate of the temperature of plasma nanosphere is simulated and studied after the injection of electromagnetic waves into it. For this purpose, the plasma nanosphere is irradiated by a laser beam with Gaussian profile and the variation rate of the temperature is investigated. Diagrams of the variation rate of the plasma temperature are presented in terms of some parameters such as the plasma frequency, the radius of the plasma nanosphere, the wavelength of the laser beam, the temperature of the electrons, the relative distance between the front mirror of laser structure and nanosphere center as well as the position of the beam waist center with respect to the center of the nanosphere. In this regard, the temperature of the plasma nanosphere can be reduced by laser irradiation, thus observing the cooling of the plasma. These calculations are performed for the plasma in the collisional approximation. The results obtained can be potentially employed for designing a new type of CAP-based cancer treatment, being useful for the destruction of cancerous tissues and the delivery of drugs to them.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: We considered references [20,21,22] and [32] for this article as they have been noted in Introduction].

References

  1. T. Kondo, Elucidation of mechanism of apoptosis induced by cold atmospheric plasma toward to cancer therapy. Sensitization by physical and chemical modalities. Purazuma Kaku Yugo Gakkai-Shi 97(3), 129–133 (2021)

    Google Scholar 

  2. M. Keidar, Plasma for cancer treatment. Plasma Sources Sci. Technol. (2015). https://doi.org/10.1088/0963-0252/24/3/033001

    Article  Google Scholar 

  3. E. Stoffels, I.E. Kieft, R.E.J. Sladek, L.J.M. Van den Bedem, E.P. Van der Laan, M. Steinbuch, Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci. Technol. 15(4), 169–180 (2006). https://doi.org/10.1088/0963-0252/15/4/S03

    Article  Google Scholar 

  4. M. Laroussi, M.G. Kong, G. Morfill, W. Stolz, Plasma Medicine (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9780511902598

    Book  Google Scholar 

  5. A. Fridman, G. Friedman, Plasma Medicine (Wiley, 2013)

    Google Scholar 

  6. M. Keidar, I.I. Beilis, Plasma Engineering Applications from Aerospace to Bio and Nanotechnology (Elsevier, 2013)

    Google Scholar 

  7. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008). https://doi.org/10.1002/ppap.200700154

    Article  Google Scholar 

  8. J. Tornin, C. Labay, F. Tampieri, M.P. Maria-Pau Ginebra, C.C. Cristina, Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures. Nat. Protoc. 16, 2826–2850 (2021). https://doi.org/10.1038/s41596-021-00521-5

    Article  Google Scholar 

  9. K. Torii, S. Yamada, K. Nakamura, H. Tanaka, H. Kajiyama, K. Tanahashi et al., Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer 18(3), 635–643 (2015). https://doi.org/10.1007/s10120-014-0395-6

    Article  Google Scholar 

  10. N. Hattori, S. Yamada, K. Torii, S. Takeda, K. Nakamura, H. Tanaka et al., Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 47, 1655–1662 (2015). https://doi.org/10.3892/ijo.2015.3149

    Article  Google Scholar 

  11. A.A. Rukhadze, A.F. Alexandrov, L.S. Bogdankevich, Principles of Plasma Electrodynamics, 2nd edn. (Urss, Moscow, 2013)

    Google Scholar 

  12. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, 1973)

    Book  Google Scholar 

  13. V.E. Golant, A.P. Zhilinsky, I.E. Sakharov, S.C. Brown, Fundamentals of Plasma Physics (Wiley, New York, 1980)

    Google Scholar 

  14. A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics: Linear Theory (Pergamon, 1975)

    Google Scholar 

  15. Y. Kazakov, D.V. Eester, J. Ongena, Plasma heating in present-day and future fusion machines, in 12th Carolus Magnus Summer School on Plasma and Fusion Energy Physics (2015)

  16. H. Huang, C. Dai, H. Shen, M. Gu, Y. Wang, J. Liu, L. Chen, L. Sun, Recent advances on the model, measurement technique, and application of single cell mechanics. Int. J. Mol. Sci. 21(17), 6248 (2020). https://doi.org/10.3390/ijms21176248

    Article  Google Scholar 

  17. I.S. Amiri, J. Ali, Nano optical tweezers generation used for heat surgery of a human tissue cancer cells using add/drop interferometer system. Quantum Matter 2(6), 489–493 (2013). https://doi.org/10.1166/qm.2013.1087

    Article  Google Scholar 

  18. Y. Tan, A.Y.H. Leung, K. Wang, T. Fung, D. Sun, Optical tweezer technology. IEEE Nanatechnol. Mag. 5(1), 17–21 (2011). https://doi.org/10.1109/MNANO.2010.939832

    Article  Google Scholar 

  19. G. Hong-Lian, L. Chun-Xiang, D. Jian-Fa, J. Yu-qiang, H. Xue-hai, L. Zhao-lin, C. Bing-Ying, Z. Dao-zhong, Mechanical properties of breast cancer cell membrane studied with optical tweezers. Chin. Phys. Lett. 21(12), 2543 (2004). https://doi.org/10.1088/0256-307X/21/12/062

    Article  ADS  Google Scholar 

  20. M. Rasouli, N. Fallah, K. Ostrikov, Lung cancer oncotherapy through novel modalities: gas plasma and nanoparticle technologies. IntechOpen (2022). https://doi.org/10.5772/intechopen.92053

    Article  Google Scholar 

  21. Z. He, K. Liu, E. Manaloto, A. Casey, G.P. Cribaro, H.J. Byrne et al., Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death. Sci. Rep. 8, 5298 (2018). https://doi.org/10.1038/s41598-018-23262-0

    Article  ADS  Google Scholar 

  22. X. Cheng, W. Murphy, N. Recek, D. Yan, U. Cvelbar, A. Vesel et al., Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J. Phys. D Appl. Phys. 47, 335402 (2014). https://doi.org/10.1088/0022-3727/47/33/335402

    Article  Google Scholar 

  23. N.Bleistein, Mathematics of modeling, migration and inversion with Gaussian beams, in European Association of Geoscientists & Engineers (2008). https://doi.org/10.3997/2214-4609.201405084.

  24. D.S. Simon, A Guided Tour of Light Beams, from Lasers to Optical Knots (Morgan & Claypool Publishers, 2016). https://doi.org/10.1088/978-1-6817-4437-7

    Book  Google Scholar 

  25. J.A. Lock, P. Laven, Co-polarized and cross-polarized scattering of an off-axis focused Gaussian beam by a spherical particle. 1. Exact GLMT formalism. J. Quant. Spectrosc. Radiat. Transf. 221, 260–272 (2018). https://doi.org/10.1016/j.jqsrt.2018.08.029

    Article  ADS  Google Scholar 

  26. X. Liu, G. Shan, J. Yu, W. Yang, Z. Ren, X. Wang, X. Xie, H. Chen, X. Chen, Laser heating of metallic nanoparticles for photothermal ablation applications. AIP Adv. 7(2), 66 (2017). https://doi.org/10.1063/1.4977554

    Article  Google Scholar 

  27. S. Malek, R. Poursalehi, The effects of laser wavelength and particle size on heating and melting of gold nanoparticles dispersed in liquid. Sci. Iran. Trans. Nanotechnol. 23(3), 1489–1495 (2016). https://doi.org/10.24200/SCI.2016.3912

    Article  Google Scholar 

  28. H.S. Shuichi, D. Werner, U.T. Takayuki, Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C 13, 28–54 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.01.001

    Article  Google Scholar 

  29. G. Baffou, Gold nanoparticles as nanosources of heat. Photoniques (2018). https://doi.org/10.1051/photon/2018S342

    Article  Google Scholar 

  30. B. Fasla, R. Benmouna, M. Benmouna, Modeling of tumor’s tissue heating by nanoparticles. J. Appl. Phys. 108, 124703 (2010). https://doi.org/10.1063/1.3525089

    Article  ADS  Google Scholar 

  31. J. Shao, R.J. Griffin, E.I. Galanzha, J.W. Kim, N. Koonce, J. Webber, T. Mustafa, A.S. Biris, D.A. Nedosekin, V.P. Zharov, Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci. Rep. 3(1293), 66 (2013). https://doi.org/10.1038/srep01293

    Article  Google Scholar 

  32. F. Khosravi, B. Jazi, A. Abdoli-Arani, Simulation of Gaussian electromagnetic wave interaction and its effect on the dynamics of metallic nanosphere (repulsion or even elasticity). Eur. Phys. J. Plus 137(1), 139 (2022). https://doi.org/10.1140/epjp/s13360-021-02324-9

    Article  Google Scholar 

  33. R.C. Davidson, Theory of nonneutral plasmas (W. A. Benjamin, 1974)

    Google Scholar 

  34. L. Valkunas, D. Abramavicius, T. Mančal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (Wiley, 2013). https://doi.org/10.1002/9783527653652

    Book  Google Scholar 

  35. Callen J.D. (2006). Fundamentals of Plasma Physics. University of Wisconsin.

  36. J.A. Stratton, Electromagnetic Theory (Wiley/IEEE Press, 2007). https://doi.org/10.1002/9781119134640

    Book  MATH  Google Scholar 

  37. G. Gouesbet, G. Gréhan, Generalized Lorenz–Mie Theories (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-17194-9

    Book  MATH  Google Scholar 

  38. F.J. Duarte, Tunable Lasers Handbook (Academic Press, 1995). https://doi.org/10.1016/B978-0-12-222695-3.X5000-4

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jazi.

Appendix A

Appendix A

As can be seen in formulas (79), the coefficients \(c_{n}^{{{\text{pw}}}}\) (pw for plane wave) are isolated because they appear in the Bromwich formulation of the pure LMT. They are given by:

$$ c_{n}^{{{\text{pw}}}} = \frac{1}{ik}\left( { - i} \right)^{n} \frac{2n + 1}{{n\left( {n + 1} \right)}} $$
(A1)

It allows to disconnect the \(c_{n}^{{{\text{pw}}}}\)’s and the \(g_{n}^{m}\)’s (n from 1 to infinity, and m from − n to n). Also, the generalized Legendre functions have been used in formulas (79) which are introduced as:

$$ \tau_{n}^{m} \left( {\cos \theta } \right) = \frac{{\text{d}}}{{{\text{d}}\theta }}P_{n}^{m} \left( {\cos \theta } \right){ } $$
(A2)
$$ \pi_{n}^{m} \left( {\cos \theta } \right) = \frac{{P_{n}^{m} \left( {\cos \theta } \right)}}{\sin \theta } $$
(A3)

Generalized Legendre functions \(\tau_{n}^{1}\) and \(\pi_{n}^{1}\) identify with usual Legendre functions of the LMT, namely τn and πn, respectively.

The basic solutions of the spherical Bessel equation for n given are four spherical Bessel functions that denoted by \(\psi_{n}^{\left( i \right)} ,{ }i = 1,2,3,4\) as follows:

$$ \psi_{n}^{\left( 1 \right)} \left( x \right) = \sqrt {\frac{\pi }{2x}} J_{n + 1/2} \left( x \right) $$
(A4)
$$ \psi_{n}^{\left( 4 \right)} \left( x \right) = \sqrt {\frac{\pi }{2x}} H_{n + 1/2}^{\left( 2 \right)} \left( x \right) $$
(A5)

in which J and H(2) are the ordinary Bessel functions and Hankel functions of the second kind, respectively.

Here, the size parameter α and the optical size parameter β are introduced by:

$$ \alpha = \frac{\pi d}{\lambda } $$
(A6)
$$ \beta = M\alpha $$
(A7)

in which λ is the wavelength in the surrounding medium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, F., Jazi, B. & Abdoli-Arani, A. The plasma nanosphere cooling rate simulation in the presence of the coherent electromagnetic waves with Gaussian profile. Eur. Phys. J. D 76, 96 (2022). https://doi.org/10.1140/epjd/s10053-022-00422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00422-6

Navigation