Skip to main content
Log in

Optimization of high-order harmonic generation for the time-resolved ARPES

  • Regular Article - Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We experimentally investigated the optimized phase matching condition for high order harmonic generation as a source of time-resolved Angle-resolved photoemission spectroscopy (TR-ARPES) applications. In the loose focusing scheme, we find that the divergence of harmonics decreases with the increase of gas cell length, while the maximum intensity is obtained with 10–15 mm gas cell. Our result shows that stable beam condition with best temporal resolution can be realized for TR-ARPES by using a longer gas cell (longer than 25 mm in our experiment), and an appropriate gas cell length can provide balanced condition for good beam intensity and good temporal resolution.

Graphical abstract

For the experiments carried out on HHG-based TR ARPES, the wavefront tilt of harmonic beam is inevitably introduced by the grating used in monochromator, leading to the boarding of pulse width and the dramatic decrease of the temporal resolution. A simple way to decrease the wavefront tilt is by optimizing the beam quality of high order harmonics. In our work, we aim to decrease the divergence of harmonic beam while keeping the enough intensity. We have experimentally investigated the intensity and beam divergence of high order harmonics generated in Ar for different gas cell condition. The divergence of harmonics decreases with the increase of gas cell length which is shown in (a), while the maximum intensity is obtained with 10 15 mm gas cell shown in (b). Our result c d shows that stable beam condition with best temporal resolution can be realized for TR ARPES by using a longer gas cell, and an appropriate gas cell length can provide balanced condition for good beam intensity and good temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request. “This manuscript has associated data in a data repository. [Authors’ comment: Data is available from the corresponding author on reasonable request]”.

References

  1. J.L. Krause, K.J. Schafer, K.C. Kulander, High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535 (1992)

    Article  ADS  Google Scholar 

  2. J.J. Macklin, J. Kmetec, C. Gordon III., High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766 (1993)

    Article  ADS  Google Scholar 

  3. M. Bauer, C. Lei, K. Read, R. Tobey, J. Gland, M. Murnane, H. Kapteyn, Direct observation of surface chemistry using ultrafast soft-x-ray pulses. Phys. Rev. Lett. 87, 025501 (2001)

    Article  ADS  Google Scholar 

  4. L. Nugent-Glandorf, M. Scheer, D.A. Samuels, A.M. Mulhisen, E.R. Grant, X. Yang, V.M. Bierbaum, S.R. Leone, Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br 2. Phys. Rev. Lett. 87, 193002 (2001)

    Article  ADS  Google Scholar 

  5. E. Mårsell, C.L. Arnold, E. Lorek, D. Guenot, T. Fordell, M. Miranda, J. Mauritsson, H. Xu, A. L’Huillier, A. Mikkelsen, Secondary electron imaging of nanostructures using Extreme Ultra-Violet attosecond pulse trains and Infra-Red femtosecond pulses. Ann. Phys. 525, 162–170 (2013)

    Article  Google Scholar 

  6. R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Murnane, S. Backus, I.P. Christov, Y. Liu, D. Attwood, C. Jacobsen, Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002)

    Article  ADS  Google Scholar 

  7. D. Treacher, D. Lloyd, F. Wiegandt, K. O’Keeffe, S. Hooker, Optimised XUV holography using spatially shaped high harmonic beams. Opt. Express 27, 29016–29025 (2019)

    Article  ADS  Google Scholar 

  8. A. Damascelli, Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, 61 (2004)

    Article  Google Scholar 

  9. S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B. Ou, Q.-Y. Wang, Z. Li, Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013)

    Article  ADS  Google Scholar 

  10. Z.-H. Zhu, G. Levy, B. Ludbrook, C. Veenstra, J. Rosen, R. Comin, D. Wong, P. Dosanjh, A. Ubaldini, P. Syers, Rashba spin-splitting control at the surface of the topological insulator Bi 2 Se 3. Phys. Rev. Lett. 107, 186405 (2011)

    Article  ADS  Google Scholar 

  11. B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, F. Bisti, Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015)

    Article  Google Scholar 

  12. Y. Saitoh, H. Kimura, Y. Suzuki, T. Nakatani, T. Matsushita, T. Muro, T. Miyahara, M. Fujisawa, K. Soda, S. Ueda, Performance of a very high resolution soft x-ray beamline BL25SU with a twin-helical undulator at SPring-8. Rev. Sci. Instrum. 71, 3254–3259 (2000)

    Article  ADS  Google Scholar 

  13. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015)

    Article  ADS  Google Scholar 

  14. J. Koralek, J. Douglas, N. Plumb, J. Griffith, S. Cundiff, H. Kapteyn, M. Murnane, D. Dessau, Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 78, 053905 (2007)

    Article  ADS  Google Scholar 

  15. T. Kiss, T. Shimojima, K. Ishizaka, A. Chainani, T. Togashi, T. Kanai, X.-Y. Wang, C.-T. Chen, S. Watanabe, S. Shin, A versatile system for ultrahigh resolution, low temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 023106 (2008)

    Article  ADS  Google Scholar 

  16. F. Cilento, A. Crepaldi, G. Manzoni, A. Sterzi, M. Zacchigna, P. Bugnon, H. Berger, F. Parmigiani, Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source. J. Electron Spectrosc. Relat. Phenom. 207, 7–13 (2016)

    Article  Google Scholar 

  17. E.J. Sie, XUV-Based Time-Resolved ARPES, in Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides (Springer, 2018), pp. 115–129.

  18. I. Gierz, J.C. Petersen, M. Mitrano, C. Cacho, I.E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013)

    Article  ADS  Google Scholar 

  19. R. Carley, K. Döbrich, B. Frietsch, C. Gahl, M. Teichmann, O. Schwarzkopf, P. Wernet, M. Weinelt, Femtosecond laser excitation drives ferromagnetic gadolinium out of magnetic equilibrium. Phys. Rev. Lett. 109, 057401 (2012)

    Article  ADS  Google Scholar 

  20. J.C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I.E. Turcu, E. Springate, F. Fromm, C. Raidel, Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013)

    Article  ADS  Google Scholar 

  21. G. Rohde, A. Hendel, A. Stange, K. Hanff, L.-P. Oloff, L. Yang, K. Rossnagel, M. Bauer, Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution. Rev. Sci. Instrum. 87, 103102 (2016)

    Article  ADS  Google Scholar 

  22. M. Hajlaoui, E. Papalazarou, J. Mauchain, Z. Jiang, I. Miotkowski, Y. Chen, A. Taleb-Ibrahimi, L. Perfetti, M. Marsi, Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3. European Phys. J. Spec. Top. 222, 1271–1275 (2013)

    Article  ADS  Google Scholar 

  23. F. Frassetto, C. Cacho, C.A. Froud, I.E. Turcu, P. Villoresi, W.A. Bryan, E. Springate, L. Poletto, Single-grating monochromator for extreme-ultraviolet ultrashort pulses. Opt. Express 19, 19169–19181 (2011)

    Article  ADS  Google Scholar 

  24. L. Poletto, P. Villoresi, F. Frassetto, F. Calegari, F. Ferrari, M. Lucchini, G. Sansone, M. Nisoli, Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 80, 123109 (2009)

    Article  ADS  Google Scholar 

  25. G. Dakovski, Y. Li, T. Durakiewicz, G. Rodriguez, Tunable ultrafast extreme ultraviolet source for time-and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 81, 073108 (2010)

    Article  ADS  Google Scholar 

  26. H. Igarashi, A. Makida, M. Ito, T. Sekikawa, Pulse compression of phase-matched high harmonic pulses from a time-delay compensated monochromator. Opt. Express 20, 3725–3732 (2012)

    Article  ADS  Google Scholar 

  27. M. Eckstein, J. Hummert, M. Kubin, C.-H. Yang, F. Frassetto, L. Poletto, M. J. Vrakking, and O. Kornilov, Alignment and characterization of the two-stage time delay compensating XUV monochromator, arXiv preprint arXiv:1604.02650 (2016).

  28. T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. 106, 10516–10521 (2009)

    Article  ADS  Google Scholar 

  29. A. Rundquist, C.G. Durfee, Z. Chang, C. Herne, S. Backus, M.M. Murnane, H.C. Kapteyn, Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998)

    Article  ADS  Google Scholar 

  30. D. Lee, H. Kim, K. Hong, C.H. Nam, I. Choi, A. Bartnik, H. Fiedorowicz, Generation of bright low-divergence high-order harmonics in a long gas jet. Appl. Phys. Lett. 81, 3726–3728 (2002)

    Article  ADS  Google Scholar 

  31. E.J. Takahashi, Y. Nabekawa, K. Midorikawa, Low-divergence coherent soft x-ray source at 13 nm by high-order harmonics. Appl. Phys. Lett. 84, 4–6 (2004)

    Article  ADS  Google Scholar 

  32. P. Ye, H. Teng, X.-K. He, S.-Y. Zhong, L.-F. Wang, M.-J. Zhan, W. Zhang, C.-X. Yun, Z.-Y. Wei, Minimizing the angular divergence of high-order harmonics by truncating the truncated Bessel beam. Phys. Rev. A 90, 063808 (2014)

    Article  ADS  Google Scholar 

  33. S.R. Abbing, F. Campi, F.S. Sajjadian, N. Lin, P. Smorenburg, P.M. Kraus, Divergence control of high-harmonic generation. Phys. Rev. Appl. 13, 054029 (2020)

    Article  ADS  Google Scholar 

  34. J. Yao, H. Xiong, H. Xu, Y. Fu, B. Zeng, W. Chu, Y. Cheng, Z. Xu, X. Liu, J. Chen, A systematic investigation of high harmonic generation using mid-infrared driving laser pulses. Sci. China Phys., Mech. Astron. 53, 1054–1059 (2010)

    Article  ADS  Google Scholar 

  35. P. Balcou, P. Salieres, A. L’Huillier, M. Lewenstein, Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 55, 3204 (1997)

    Article  ADS  Google Scholar 

  36. L. Chipperfield, P. Knight, J. Tisch, J. Marangos, Tracking individual electron trajectories in a high harmonic spectrum. Opt. Commun. 264, 494–501 (2006)

    Article  ADS  Google Scholar 

  37. P. Salieres, A. L’Huillier, M. Lewenstein, Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776 (1995)

    Article  ADS  Google Scholar 

  38. F. Lindner, G.G. Paulus, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Gouy phase shift for few-cycle laser pulses. Phys. Rev. Lett. 92, 113001 (2004)

    Article  ADS  Google Scholar 

  39. E.J. Sie, T. Rohwer, C. Lee et al., Time-resolved XUV ARPES with tunable 24–33 eV laser pulses at 30 meV resolution[J]. Nat. Commun. 10(1), 1–11 (2019)

    Article  ADS  Google Scholar 

  40. M. Keunecke, C. Möller, D. Schmitt et al., Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline[J]. Rev. Sci. Instrum. 91(6), 063905 (2020)

    Article  ADS  Google Scholar 

  41. P. Miotti, F. Cilento, R. Cucini, et al., A novel high order harmonic source for time-and angle-resolved photoemission experiments[C]//compact EUV & X-ray light sources. Opt. Soc. Am. EW2B. 5 (2018)

Download references

Acknowledgements

The authors would like to thank Hao Teng and Kun Zhao for helpful discussions.

Funding

National Natural Science Foundation of China (11974416, 91850209).

Author information

Authors and Affiliations

Authors

Contributions

The idea was proposed by Xinkui He and Yueying Liang, and the results were done and analyzed by Yueying Liang and Liqiang Liu. All the authors have contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Xinkui He or Zhiyi Wei.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., He, X., Liu, L. et al. Optimization of high-order harmonic generation for the time-resolved ARPES. Eur. Phys. J. D 76, 85 (2022). https://doi.org/10.1140/epjd/s10053-022-00404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00404-8

Navigation